- -

Serial and Parallel Iterative Splitting Methods: Algorithms and Applications to Fractional Convection-Diffusion Equations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Serial and Parallel Iterative Splitting Methods: Algorithms and Applications to Fractional Convection-Diffusion Equations

Mostrar el registro completo del ítem

Geiser, J.; Martínez Molada, E.; Hueso, JL. (2020). Serial and Parallel Iterative Splitting Methods: Algorithms and Applications to Fractional Convection-Diffusion Equations. Mathematics. 8(11):1-42. https://doi.org/10.3390/math8111950

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162238

Ficheros en el ítem

Metadatos del ítem

Título: Serial and Parallel Iterative Splitting Methods: Algorithms and Applications to Fractional Convection-Diffusion Equations
Autor: Geiser, Jürgen Martínez Molada, Eulalia Hueso, Jose L.
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] The benefits and properties of iterative splitting methods, which are based on serial versions, have been studied in recent years, this work, we extend the iterative splitting methods to novel classes of parallel ...[+]
Palabras clave: Multisplitting method , Iterative splitting method , Numerical analysis , Operator-splitting method , Initial value problem , Iterative solver method , Waveform relaxation method , Convection-diffusion equation , Viscous Burgers' equation , Fractional diffusion equations
Derechos de uso: Reconocimiento (by)
Fuente:
Mathematics. (eissn: 2227-7390 )
DOI: 10.3390/math8111950
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/math8111950
Código del Proyecto:
info:eu-repo/grantAgreement/DAAD//91588469/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
Agradecimientos:
This research was partially supported by Ministerio de Economia y Competitividad, Spain, under grant PGC2018-095896-B-C21-C22 and German Academic Exchange Service grant number 91588469.
Tipo: Artículo

References

Farago, I., & Geiser, J. (2007). Iterative operator-splitting methods for linear problems. International Journal of Computational Science and Engineering, 3(4), 255. doi:10.1504/ijcse.2007.018264

Frommer, A., & Szyld, D. B. (2000). On asynchronous iterations. Journal of Computational and Applied Mathematics, 123(1-2), 201-216. doi:10.1016/s0377-0427(00)00409-x

O’Leary, D. P., & White, R. E. (1985). Multi-Splittings of Matrices and Parallel Solution of Linear Systems. SIAM Journal on Algebraic Discrete Methods, 6(4), 630-640. doi:10.1137/0606062 [+]
Farago, I., & Geiser, J. (2007). Iterative operator-splitting methods for linear problems. International Journal of Computational Science and Engineering, 3(4), 255. doi:10.1504/ijcse.2007.018264

Frommer, A., & Szyld, D. B. (2000). On asynchronous iterations. Journal of Computational and Applied Mathematics, 123(1-2), 201-216. doi:10.1016/s0377-0427(00)00409-x

O’Leary, D. P., & White, R. E. (1985). Multi-Splittings of Matrices and Parallel Solution of Linear Systems. SIAM Journal on Algebraic Discrete Methods, 6(4), 630-640. doi:10.1137/0606062

White, R. E. (1986). Parallel Algorithms for Nonlinear Problems. SIAM Journal on Algebraic Discrete Methods, 7(1), 137-149. doi:10.1137/0607017

Geiser, J. (2016). Picard’s iterative method for nonlinear multicomponent transport equations. Cogent Mathematics, 3(1), 1158510. doi:10.1080/23311835.2016.1158510

Miekkala, U., & Nevanlinna, O. (1987). Convergence of Dynamic Iteration Methods for Initial Value Problems. SIAM Journal on Scientific and Statistical Computing, 8(4), 459-482. doi:10.1137/0908046

Miekkala, U., & Nevanlinna, O. (1996). Iterative solution of systems of linear differential equations. Acta Numerica, 5, 259-307. doi:10.1017/s096249290000266x

Geiser, J. (2010). Iterative operator-splitting methods for nonlinear differential equations and applications. Numerical Methods for Partial Differential Equations, 27(5), 1026-1054. doi:10.1002/num.20568

He, D., Pan, K., & Hu, H. (2020). A spatial fourth-order maximum principle preserving operator splitting scheme for the multi-dimensional fractional Allen-Cahn equation. Applied Numerical Mathematics, 151, 44-63. doi:10.1016/j.apnum.2019.12.018

Giona, M., Cerbelli, S., & Roman, H. E. (1992). Fractional diffusion equation and relaxation in complex viscoelastic materials. Physica A: Statistical Mechanics and its Applications, 191(1-4), 449-453. doi:10.1016/0378-4371(92)90566-9

Nigmatullin, R. R. (1986). The realization of the generalized transfer equation in a medium with fractal geometry. physica status solidi (b), 133(1), 425-430. doi:10.1002/pssb.2221330150

Allen, S. M., & Cahn, J. W. (1979). A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica, 27(6), 1085-1095. doi:10.1016/0001-6160(79)90196-2

Yue, P., Feng, J. J., Liu, C., & Shen, J. (2005). Diffuse-interface simulations of drop coalescence and retraction in viscoelastic fluids. Journal of Non-Newtonian Fluid Mechanics, 129(3), 163-176. doi:10.1016/j.jnnfm.2005.07.002

Sommacal, L., Melchior, P., Oustaloup, A., Cabelguen, J.-M., & Ijspeert, A. J. (2008). Fractional Multi-models of the Frog Gastrocnemius Muscle. Journal of Vibration and Control, 14(9-10), 1415-1430. doi:10.1177/1077546307087440

Moshrefi-Torbati, M., & Hammond, J. K. (1998). Physical and geometrical interpretation of fractional operators. Journal of the Franklin Institute, 335(6), 1077-1086. doi:10.1016/s0016-0032(97)00048-3

El-Nabulsi, R. A. (2009). Fractional Dirac operators and deformed field theory on Clifford algebra. Chaos, Solitons & Fractals, 42(5), 2614-2622. doi:10.1016/j.chaos.2009.04.002

Kanney, J. F., Miller, C. T., & Kelley, C. T. (2003). Convergence of iterative split-operator approaches for approximating nonlinear reactive transport problems. Advances in Water Resources, 26(3), 247-261. doi:10.1016/s0309-1708(02)00162-8

Geiser, J., Hueso, J. L., & Martínez, E. (2020). Adaptive Iterative Splitting Methods for Convection-Diffusion-Reaction Equations. Mathematics, 8(3), 302. doi:10.3390/math8030302

Meerschaert, M. M., Scheffler, H.-P., & Tadjeran, C. (2006). Finite difference methods for two-dimensional fractional dispersion equation. Journal of Computational Physics, 211(1), 249-261. doi:10.1016/j.jcp.2005.05.017

Irreversibility, Least Action Principle and Causality. Preprint, HAL, 2008 https://hal.archives-ouvertes.fr/hal-00348123v1

Cresson, J. (2007). Fractional embedding of differential operators and Lagrangian systems. Journal of Mathematical Physics, 48(3), 033504. doi:10.1063/1.2483292

Meerschaert, M. M., & Tadjeran, C. (2004). Finite difference approximations for fractional advection–dispersion flow equations. Journal of Computational and Applied Mathematics, 172(1), 65-77. doi:10.1016/j.cam.2004.01.033

Geiser, J. (2011). Computing Exponential for Iterative Splitting Methods: Algorithms and Applications. Journal of Applied Mathematics, 2011, 1-27. doi:10.1155/2011/193781

Geiser, J. (2008). Iterative operator-splitting methods with higher-order time integration methods and applications for parabolic partial differential equations. Journal of Computational and Applied Mathematics, 217(1), 227-242. doi:10.1016/j.cam.2007.06.028

Ladics, T. (2015). Error analysis of waveform relaxation method for semi-linear partial differential equations. Journal of Computational and Applied Mathematics, 285, 15-31. doi:10.1016/j.cam.2015.02.003

Yuan, D., & Burrage, K. (2003). Convergence of the parallel chaotic waveform relaxation method for stiff systems. Journal of Computational and Applied Mathematics, 151(1), 201-213. doi:10.1016/s0377-0427(02)00749-5

Ladics, T., & Faragó, I. (2013). Generalizations and error analysis of the iterative operator splitting method. Open Mathematics, 11(8). doi:10.2478/s11533-013-0246-4

Moler, C., & Van Loan, C. (2003). Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later. SIAM Review, 45(1), 3-49. doi:10.1137/s00361445024180

Najfeld, I., & Havel, T. F. (1995). Derivatives of the Matrix Exponential and Their Computation. Advances in Applied Mathematics, 16(3), 321-375. doi:10.1006/aama.1995.1017

Hochbruck, M., & Ostermann, A. (2010). Exponential integrators. Acta Numerica, 19, 209-286. doi:10.1017/s0962492910000048

Casas, F., & Iserles, A. (2006). Explicit Magnus expansions for nonlinear equations. Journal of Physics A: Mathematical and General, 39(19), 5445-5461. doi:10.1088/0305-4470/39/19/s07

Magnus, W. (1954). On the exponential solution of differential equations for a linear operator. Communications on Pure and Applied Mathematics, 7(4), 649-673. doi:10.1002/cpa.3160070404

Jeltsch, R., & Pohl, B. (1995). Waveform Relaxation with Overlapping Splittings. SIAM Journal on Scientific Computing, 16(1), 40-49. doi:10.1137/0916004

Faragó, I. (2008). A modified iterated operator splitting method. Applied Mathematical Modelling, 32(8), 1542-1551. doi:10.1016/j.apm.2007.04.018

Li, J., Jiang, Y., & Miao, Z. (2019). A parareal approach of semi‐linear parabolic equations based on general waveform relaxation. Numerical Methods for Partial Differential Equations, 35(6), 2017-2043. doi:10.1002/num.22390

Trotter, H. F. (1959). On the product of semi-groups of operators. Proceedings of the American Mathematical Society, 10(4), 545-545. doi:10.1090/s0002-9939-1959-0108732-6

Strang, G. (1968). On the Construction and Comparison of Difference Schemes. SIAM Journal on Numerical Analysis, 5(3), 506-517. doi:10.1137/0705041

Geiser, J. (2009). Operator-splitting methods in respect of eigenvalue problems for nonlinear equations and applications for Burgers equations. Journal of Computational and Applied Mathematics, 231(2), 815-827. doi:10.1016/j.cam.2009.05.009

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem