Farago, I., & Geiser, J. (2007). Iterative operator-splitting methods for linear problems. International Journal of Computational Science and Engineering, 3(4), 255. doi:10.1504/ijcse.2007.018264
Frommer, A., & Szyld, D. B. (2000). On asynchronous iterations. Journal of Computational and Applied Mathematics, 123(1-2), 201-216. doi:10.1016/s0377-0427(00)00409-x
O’Leary, D. P., & White, R. E. (1985). Multi-Splittings of Matrices and Parallel Solution of Linear Systems. SIAM Journal on Algebraic Discrete Methods, 6(4), 630-640. doi:10.1137/0606062
[+]
Farago, I., & Geiser, J. (2007). Iterative operator-splitting methods for linear problems. International Journal of Computational Science and Engineering, 3(4), 255. doi:10.1504/ijcse.2007.018264
Frommer, A., & Szyld, D. B. (2000). On asynchronous iterations. Journal of Computational and Applied Mathematics, 123(1-2), 201-216. doi:10.1016/s0377-0427(00)00409-x
O’Leary, D. P., & White, R. E. (1985). Multi-Splittings of Matrices and Parallel Solution of Linear Systems. SIAM Journal on Algebraic Discrete Methods, 6(4), 630-640. doi:10.1137/0606062
White, R. E. (1986). Parallel Algorithms for Nonlinear Problems. SIAM Journal on Algebraic Discrete Methods, 7(1), 137-149. doi:10.1137/0607017
Geiser, J. (2016). Picard’s iterative method for nonlinear multicomponent transport equations. Cogent Mathematics, 3(1), 1158510. doi:10.1080/23311835.2016.1158510
Miekkala, U., & Nevanlinna, O. (1987). Convergence of Dynamic Iteration Methods for Initial Value Problems. SIAM Journal on Scientific and Statistical Computing, 8(4), 459-482. doi:10.1137/0908046
Miekkala, U., & Nevanlinna, O. (1996). Iterative solution of systems of linear differential equations. Acta Numerica, 5, 259-307. doi:10.1017/s096249290000266x
Geiser, J. (2010). Iterative operator-splitting methods for nonlinear differential equations and applications. Numerical Methods for Partial Differential Equations, 27(5), 1026-1054. doi:10.1002/num.20568
He, D., Pan, K., & Hu, H. (2020). A spatial fourth-order maximum principle preserving operator splitting scheme for the multi-dimensional fractional Allen-Cahn equation. Applied Numerical Mathematics, 151, 44-63. doi:10.1016/j.apnum.2019.12.018
Giona, M., Cerbelli, S., & Roman, H. E. (1992). Fractional diffusion equation and relaxation in complex viscoelastic materials. Physica A: Statistical Mechanics and its Applications, 191(1-4), 449-453. doi:10.1016/0378-4371(92)90566-9
Nigmatullin, R. R. (1986). The realization of the generalized transfer equation in a medium with fractal geometry. physica status solidi (b), 133(1), 425-430. doi:10.1002/pssb.2221330150
Allen, S. M., & Cahn, J. W. (1979). A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica, 27(6), 1085-1095. doi:10.1016/0001-6160(79)90196-2
Yue, P., Feng, J. J., Liu, C., & Shen, J. (2005). Diffuse-interface simulations of drop coalescence and retraction in viscoelastic fluids. Journal of Non-Newtonian Fluid Mechanics, 129(3), 163-176. doi:10.1016/j.jnnfm.2005.07.002
Sommacal, L., Melchior, P., Oustaloup, A., Cabelguen, J.-M., & Ijspeert, A. J. (2008). Fractional Multi-models of the Frog Gastrocnemius Muscle. Journal of Vibration and Control, 14(9-10), 1415-1430. doi:10.1177/1077546307087440
Moshrefi-Torbati, M., & Hammond, J. K. (1998). Physical and geometrical interpretation of fractional operators. Journal of the Franklin Institute, 335(6), 1077-1086. doi:10.1016/s0016-0032(97)00048-3
El-Nabulsi, R. A. (2009). Fractional Dirac operators and deformed field theory on Clifford algebra. Chaos, Solitons & Fractals, 42(5), 2614-2622. doi:10.1016/j.chaos.2009.04.002
Kanney, J. F., Miller, C. T., & Kelley, C. T. (2003). Convergence of iterative split-operator approaches for approximating nonlinear reactive transport problems. Advances in Water Resources, 26(3), 247-261. doi:10.1016/s0309-1708(02)00162-8
Geiser, J., Hueso, J. L., & Martínez, E. (2020). Adaptive Iterative Splitting Methods for Convection-Diffusion-Reaction Equations. Mathematics, 8(3), 302. doi:10.3390/math8030302
Meerschaert, M. M., Scheffler, H.-P., & Tadjeran, C. (2006). Finite difference methods for two-dimensional fractional dispersion equation. Journal of Computational Physics, 211(1), 249-261. doi:10.1016/j.jcp.2005.05.017
Irreversibility, Least Action Principle and Causality. Preprint, HAL, 2008 https://hal.archives-ouvertes.fr/hal-00348123v1
Cresson, J. (2007). Fractional embedding of differential operators and Lagrangian systems. Journal of Mathematical Physics, 48(3), 033504. doi:10.1063/1.2483292
Meerschaert, M. M., & Tadjeran, C. (2004). Finite difference approximations for fractional advection–dispersion flow equations. Journal of Computational and Applied Mathematics, 172(1), 65-77. doi:10.1016/j.cam.2004.01.033
Geiser, J. (2011). Computing Exponential for Iterative Splitting Methods: Algorithms and Applications. Journal of Applied Mathematics, 2011, 1-27. doi:10.1155/2011/193781
Geiser, J. (2008). Iterative operator-splitting methods with higher-order time integration methods and applications for parabolic partial differential equations. Journal of Computational and Applied Mathematics, 217(1), 227-242. doi:10.1016/j.cam.2007.06.028
Ladics, T. (2015). Error analysis of waveform relaxation method for semi-linear partial differential equations. Journal of Computational and Applied Mathematics, 285, 15-31. doi:10.1016/j.cam.2015.02.003
Yuan, D., & Burrage, K. (2003). Convergence of the parallel chaotic waveform relaxation method for stiff systems. Journal of Computational and Applied Mathematics, 151(1), 201-213. doi:10.1016/s0377-0427(02)00749-5
Ladics, T., & Faragó, I. (2013). Generalizations and error analysis of the iterative operator splitting method. Open Mathematics, 11(8). doi:10.2478/s11533-013-0246-4
Moler, C., & Van Loan, C. (2003). Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later. SIAM Review, 45(1), 3-49. doi:10.1137/s00361445024180
Najfeld, I., & Havel, T. F. (1995). Derivatives of the Matrix Exponential and Their Computation. Advances in Applied Mathematics, 16(3), 321-375. doi:10.1006/aama.1995.1017
Hochbruck, M., & Ostermann, A. (2010). Exponential integrators. Acta Numerica, 19, 209-286. doi:10.1017/s0962492910000048
Casas, F., & Iserles, A. (2006). Explicit Magnus expansions for nonlinear equations. Journal of Physics A: Mathematical and General, 39(19), 5445-5461. doi:10.1088/0305-4470/39/19/s07
Magnus, W. (1954). On the exponential solution of differential equations for a linear operator. Communications on Pure and Applied Mathematics, 7(4), 649-673. doi:10.1002/cpa.3160070404
Jeltsch, R., & Pohl, B. (1995). Waveform Relaxation with Overlapping Splittings. SIAM Journal on Scientific Computing, 16(1), 40-49. doi:10.1137/0916004
Faragó, I. (2008). A modified iterated operator splitting method. Applied Mathematical Modelling, 32(8), 1542-1551. doi:10.1016/j.apm.2007.04.018
Li, J., Jiang, Y., & Miao, Z. (2019). A parareal approach of semi‐linear parabolic equations based on general waveform relaxation. Numerical Methods for Partial Differential Equations, 35(6), 2017-2043. doi:10.1002/num.22390
Trotter, H. F. (1959). On the product of semi-groups of operators. Proceedings of the American Mathematical Society, 10(4), 545-545. doi:10.1090/s0002-9939-1959-0108732-6
Strang, G. (1968). On the Construction and Comparison of Difference Schemes. SIAM Journal on Numerical Analysis, 5(3), 506-517. doi:10.1137/0705041
Geiser, J. (2009). Operator-splitting methods in respect of eigenvalue problems for nonlinear equations and applications for Burgers equations. Journal of Computational and Applied Mathematics, 231(2), 815-827. doi:10.1016/j.cam.2009.05.009
[-]