- -

Serial and Parallel Iterative Splitting Methods: Algorithms and Applications to Fractional Convection-Diffusion Equations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Serial and Parallel Iterative Splitting Methods: Algorithms and Applications to Fractional Convection-Diffusion Equations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Geiser, Jürgen es_ES
dc.contributor.author Martínez Molada, Eulalia es_ES
dc.contributor.author Hueso, Jose L. es_ES
dc.date.accessioned 2021-02-24T04:31:35Z
dc.date.available 2021-02-24T04:31:35Z
dc.date.issued 2020-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162238
dc.description.abstract [EN] The benefits and properties of iterative splitting methods, which are based on serial versions, have been studied in recent years, this work, we extend the iterative splitting methods to novel classes of parallel versions to solve nonlinear fractional convection-diffusion equations. For such interesting partial differential examples with higher dimensional, fractional, and nonlinear terms, we could apply the parallel iterative splitting methods, which allow for accelerating the solver methods and reduce the computational time. Here, we could apply the benefits of the higher accuracy of the iterative splitting methods. We present a novel parallel iterative splitting method, which is based on the multi-splitting methods, The flexibilisation with multisplitting methods allows for decomposing large scale operator equations. In combination with iterative splitting methods, which use characteristics of waveform-relaxation (WR) methods, we could embed the relaxation behavior and deal better with the nonlinearities of the operators. We consider the convergence results of the parallel iterative splitting methods, reformulating the underlying methods with a summation of the individual convergence results of the WR methods. We discuss the numerical convergence of the serial and parallel iterative splitting methods with respect to the synchronous and asynchronous treatments. Furthermore, we present different numerical applications of fluid and phase field problems in order to validate the benefit of the parallel versions. es_ES
dc.description.sponsorship This research was partially supported by Ministerio de Economia y Competitividad, Spain, under grant PGC2018-095896-B-C21-C22 and German Academic Exchange Service grant number 91588469. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Multisplitting method es_ES
dc.subject Iterative splitting method es_ES
dc.subject Numerical analysis es_ES
dc.subject Operator-splitting method es_ES
dc.subject Initial value problem es_ES
dc.subject Iterative solver method es_ES
dc.subject Waveform relaxation method es_ES
dc.subject Convection-diffusion equation es_ES
dc.subject Viscous Burgers' equation es_ES
dc.subject Fractional diffusion equations es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Serial and Parallel Iterative Splitting Methods: Algorithms and Applications to Fractional Convection-Diffusion Equations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math8111950 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DAAD//91588469/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Geiser, J.; Martínez Molada, E.; Hueso, JL. (2020). Serial and Parallel Iterative Splitting Methods: Algorithms and Applications to Fractional Convection-Diffusion Equations. Mathematics. 8(11):1-42. https://doi.org/10.3390/math8111950 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math8111950 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 42 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\422490 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Deutscher Akademischer Austauschdienst es_ES
dc.description.references Farago, I., & Geiser, J. (2007). Iterative operator-splitting methods for linear problems. International Journal of Computational Science and Engineering, 3(4), 255. doi:10.1504/ijcse.2007.018264 es_ES
dc.description.references Frommer, A., & Szyld, D. B. (2000). On asynchronous iterations. Journal of Computational and Applied Mathematics, 123(1-2), 201-216. doi:10.1016/s0377-0427(00)00409-x es_ES
dc.description.references O’Leary, D. P., & White, R. E. (1985). Multi-Splittings of Matrices and Parallel Solution of Linear Systems. SIAM Journal on Algebraic Discrete Methods, 6(4), 630-640. doi:10.1137/0606062 es_ES
dc.description.references White, R. E. (1986). Parallel Algorithms for Nonlinear Problems. SIAM Journal on Algebraic Discrete Methods, 7(1), 137-149. doi:10.1137/0607017 es_ES
dc.description.references Geiser, J. (2016). Picard’s iterative method for nonlinear multicomponent transport equations. Cogent Mathematics, 3(1), 1158510. doi:10.1080/23311835.2016.1158510 es_ES
dc.description.references Miekkala, U., & Nevanlinna, O. (1987). Convergence of Dynamic Iteration Methods for Initial Value Problems. SIAM Journal on Scientific and Statistical Computing, 8(4), 459-482. doi:10.1137/0908046 es_ES
dc.description.references Miekkala, U., & Nevanlinna, O. (1996). Iterative solution of systems of linear differential equations. Acta Numerica, 5, 259-307. doi:10.1017/s096249290000266x es_ES
dc.description.references Geiser, J. (2010). Iterative operator-splitting methods for nonlinear differential equations and applications. Numerical Methods for Partial Differential Equations, 27(5), 1026-1054. doi:10.1002/num.20568 es_ES
dc.description.references He, D., Pan, K., & Hu, H. (2020). A spatial fourth-order maximum principle preserving operator splitting scheme for the multi-dimensional fractional Allen-Cahn equation. Applied Numerical Mathematics, 151, 44-63. doi:10.1016/j.apnum.2019.12.018 es_ES
dc.description.references Giona, M., Cerbelli, S., & Roman, H. E. (1992). Fractional diffusion equation and relaxation in complex viscoelastic materials. Physica A: Statistical Mechanics and its Applications, 191(1-4), 449-453. doi:10.1016/0378-4371(92)90566-9 es_ES
dc.description.references Nigmatullin, R. R. (1986). The realization of the generalized transfer equation in a medium with fractal geometry. physica status solidi (b), 133(1), 425-430. doi:10.1002/pssb.2221330150 es_ES
dc.description.references Allen, S. M., & Cahn, J. W. (1979). A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica, 27(6), 1085-1095. doi:10.1016/0001-6160(79)90196-2 es_ES
dc.description.references Yue, P., Feng, J. J., Liu, C., & Shen, J. (2005). Diffuse-interface simulations of drop coalescence and retraction in viscoelastic fluids. Journal of Non-Newtonian Fluid Mechanics, 129(3), 163-176. doi:10.1016/j.jnnfm.2005.07.002 es_ES
dc.description.references Sommacal, L., Melchior, P., Oustaloup, A., Cabelguen, J.-M., & Ijspeert, A. J. (2008). Fractional Multi-models of the Frog Gastrocnemius Muscle. Journal of Vibration and Control, 14(9-10), 1415-1430. doi:10.1177/1077546307087440 es_ES
dc.description.references Moshrefi-Torbati, M., & Hammond, J. K. (1998). Physical and geometrical interpretation of fractional operators. Journal of the Franklin Institute, 335(6), 1077-1086. doi:10.1016/s0016-0032(97)00048-3 es_ES
dc.description.references El-Nabulsi, R. A. (2009). Fractional Dirac operators and deformed field theory on Clifford algebra. Chaos, Solitons & Fractals, 42(5), 2614-2622. doi:10.1016/j.chaos.2009.04.002 es_ES
dc.description.references Kanney, J. F., Miller, C. T., & Kelley, C. T. (2003). Convergence of iterative split-operator approaches for approximating nonlinear reactive transport problems. Advances in Water Resources, 26(3), 247-261. doi:10.1016/s0309-1708(02)00162-8 es_ES
dc.description.references Geiser, J., Hueso, J. L., & Martínez, E. (2020). Adaptive Iterative Splitting Methods for Convection-Diffusion-Reaction Equations. Mathematics, 8(3), 302. doi:10.3390/math8030302 es_ES
dc.description.references Meerschaert, M. M., Scheffler, H.-P., & Tadjeran, C. (2006). Finite difference methods for two-dimensional fractional dispersion equation. Journal of Computational Physics, 211(1), 249-261. doi:10.1016/j.jcp.2005.05.017 es_ES
dc.description.references Irreversibility, Least Action Principle and Causality. Preprint, HAL, 2008 https://hal.archives-ouvertes.fr/hal-00348123v1 es_ES
dc.description.references Cresson, J. (2007). Fractional embedding of differential operators and Lagrangian systems. Journal of Mathematical Physics, 48(3), 033504. doi:10.1063/1.2483292 es_ES
dc.description.references Meerschaert, M. M., & Tadjeran, C. (2004). Finite difference approximations for fractional advection–dispersion flow equations. Journal of Computational and Applied Mathematics, 172(1), 65-77. doi:10.1016/j.cam.2004.01.033 es_ES
dc.description.references Geiser, J. (2011). Computing Exponential for Iterative Splitting Methods: Algorithms and Applications. Journal of Applied Mathematics, 2011, 1-27. doi:10.1155/2011/193781 es_ES
dc.description.references Geiser, J. (2008). Iterative operator-splitting methods with higher-order time integration methods and applications for parabolic partial differential equations. Journal of Computational and Applied Mathematics, 217(1), 227-242. doi:10.1016/j.cam.2007.06.028 es_ES
dc.description.references Ladics, T. (2015). Error analysis of waveform relaxation method for semi-linear partial differential equations. Journal of Computational and Applied Mathematics, 285, 15-31. doi:10.1016/j.cam.2015.02.003 es_ES
dc.description.references Yuan, D., & Burrage, K. (2003). Convergence of the parallel chaotic waveform relaxation method for stiff systems. Journal of Computational and Applied Mathematics, 151(1), 201-213. doi:10.1016/s0377-0427(02)00749-5 es_ES
dc.description.references Ladics, T., & Faragó, I. (2013). Generalizations and error analysis of the iterative operator splitting method. Open Mathematics, 11(8). doi:10.2478/s11533-013-0246-4 es_ES
dc.description.references Moler, C., & Van Loan, C. (2003). Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later. SIAM Review, 45(1), 3-49. doi:10.1137/s00361445024180 es_ES
dc.description.references Najfeld, I., & Havel, T. F. (1995). Derivatives of the Matrix Exponential and Their Computation. Advances in Applied Mathematics, 16(3), 321-375. doi:10.1006/aama.1995.1017 es_ES
dc.description.references Hochbruck, M., & Ostermann, A. (2010). Exponential integrators. Acta Numerica, 19, 209-286. doi:10.1017/s0962492910000048 es_ES
dc.description.references Casas, F., & Iserles, A. (2006). Explicit Magnus expansions for nonlinear equations. Journal of Physics A: Mathematical and General, 39(19), 5445-5461. doi:10.1088/0305-4470/39/19/s07 es_ES
dc.description.references Magnus, W. (1954). On the exponential solution of differential equations for a linear operator. Communications on Pure and Applied Mathematics, 7(4), 649-673. doi:10.1002/cpa.3160070404 es_ES
dc.description.references Jeltsch, R., & Pohl, B. (1995). Waveform Relaxation with Overlapping Splittings. SIAM Journal on Scientific Computing, 16(1), 40-49. doi:10.1137/0916004 es_ES
dc.description.references Faragó, I. (2008). A modified iterated operator splitting method. Applied Mathematical Modelling, 32(8), 1542-1551. doi:10.1016/j.apm.2007.04.018 es_ES
dc.description.references Li, J., Jiang, Y., & Miao, Z. (2019). A parareal approach of semi‐linear parabolic equations based on general waveform relaxation. Numerical Methods for Partial Differential Equations, 35(6), 2017-2043. doi:10.1002/num.22390 es_ES
dc.description.references Trotter, H. F. (1959). On the product of semi-groups of operators. Proceedings of the American Mathematical Society, 10(4), 545-545. doi:10.1090/s0002-9939-1959-0108732-6 es_ES
dc.description.references Strang, G. (1968). On the Construction and Comparison of Difference Schemes. SIAM Journal on Numerical Analysis, 5(3), 506-517. doi:10.1137/0705041 es_ES
dc.description.references Geiser, J. (2009). Operator-splitting methods in respect of eigenvalue problems for nonlinear equations and applications for Burgers equations. Journal of Computational and Applied Mathematics, 231(2), 815-827. doi:10.1016/j.cam.2009.05.009 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem