- -

Vibration Analysis for Fault Detection of Wind Turbine: New methodology of supervised machine learning techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Vibration Analysis for Fault Detection of Wind Turbine: New methodology of supervised machine learning techniques

Mostrar el registro completo del ítem

Vives-Fuster, J. (2022). Vibration Analysis for Fault Detection of Wind Turbine: New methodology of supervised machine learning techniques. The International Journal of Acoustics and Vibration. 27(2):100-105. https://doi.org/10.20855/ijav.2022.27.21836

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/202679

Ficheros en el ítem

Metadatos del ítem

Título: Vibration Analysis for Fault Detection of Wind Turbine: New methodology of supervised machine learning techniques
Autor: Vives-Fuster, Javier
Fecha difusión:
Resumen:
[EN] The implementation of supervised machine learning techniques classifiers is changing wind turbine maintenance. This automatic and autonomous learning methodology allows one to predict, detect, and anticipate the ...[+]
Palabras clave: Vibrations , Condition monitoring , Wind turbines , Machine learning , Fault diagnosis
Derechos de uso: Cerrado
Fuente:
The International Journal of Acoustics and Vibration. (issn: 1027-5851 )
DOI: 10.20855/ijav.2022.27.21836
Editorial:
International Institute of Acoustics and Vibration (IIAV)
Versión del editor: https://doi.org/10.20855/ijav.2022.27.21836
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem