- -

Vibration Analysis for Fault Detection of Wind Turbine: New methodology of supervised machine learning techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Vibration Analysis for Fault Detection of Wind Turbine: New methodology of supervised machine learning techniques

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vives-Fuster, Javier es_ES
dc.date.accessioned 2024-02-15T19:01:42Z
dc.date.available 2024-02-15T19:01:42Z
dc.date.issued 2022-06 es_ES
dc.identifier.issn 1027-5851 es_ES
dc.identifier.uri http://hdl.handle.net/10251/202679
dc.description.abstract [EN] The implementation of supervised machine learning techniques classifiers is changing wind turbine maintenance. This automatic and autonomous learning methodology allows one to predict, detect, and anticipate the degeneration of any electrical and mechanical components present in a wind turbine. In this paper, two different failure states are simulated due to bearing vibrations, comparing frequency analysis and some machine learning classifiers. With the implementation of the KNN and SVM algorithms, we can evaluate different methodologies for supervision, monitoring, and fault diagnosis in a wind turbine. With the implementation of these techniques, it reduces downtime, anticipates potential breakdowns, and aspect import if they are offshore. es_ES
dc.language Inglés es_ES
dc.publisher International Institute of Acoustics and Vibration (IIAV) es_ES
dc.relation.ispartof The International Journal of Acoustics and Vibration es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Vibrations es_ES
dc.subject Condition monitoring es_ES
dc.subject Wind turbines es_ES
dc.subject Machine learning es_ES
dc.subject Fault diagnosis es_ES
dc.title Vibration Analysis for Fault Detection of Wind Turbine: New methodology of supervised machine learning techniques es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.20855/ijav.2022.27.21836 es_ES
dc.rights.accessRights Cerrado es_ES
dc.description.bibliographicCitation Vives-Fuster, J. (2022). Vibration Analysis for Fault Detection of Wind Turbine: New methodology of supervised machine learning techniques. The International Journal of Acoustics and Vibration. 27(2):100-105. https://doi.org/10.20855/ijav.2022.27.21836 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.20855/ijav.2022.27.21836 es_ES
dc.description.upvformatpinicio 100 es_ES
dc.description.upvformatpfin 105 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\466329 es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem