Mostrar el registro sencillo del ítem
dc.contributor.author | Vives-Fuster, Javier | es_ES |
dc.date.accessioned | 2024-02-15T19:01:42Z | |
dc.date.available | 2024-02-15T19:01:42Z | |
dc.date.issued | 2022-06 | es_ES |
dc.identifier.issn | 1027-5851 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/202679 | |
dc.description.abstract | [EN] The implementation of supervised machine learning techniques classifiers is changing wind turbine maintenance. This automatic and autonomous learning methodology allows one to predict, detect, and anticipate the degeneration of any electrical and mechanical components present in a wind turbine. In this paper, two different failure states are simulated due to bearing vibrations, comparing frequency analysis and some machine learning classifiers. With the implementation of the KNN and SVM algorithms, we can evaluate different methodologies for supervision, monitoring, and fault diagnosis in a wind turbine. With the implementation of these techniques, it reduces downtime, anticipates potential breakdowns, and aspect import if they are offshore. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | International Institute of Acoustics and Vibration (IIAV) | es_ES |
dc.relation.ispartof | The International Journal of Acoustics and Vibration | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Vibrations | es_ES |
dc.subject | Condition monitoring | es_ES |
dc.subject | Wind turbines | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Fault diagnosis | es_ES |
dc.title | Vibration Analysis for Fault Detection of Wind Turbine: New methodology of supervised machine learning techniques | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.20855/ijav.2022.27.21836 | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.description.bibliographicCitation | Vives-Fuster, J. (2022). Vibration Analysis for Fault Detection of Wind Turbine: New methodology of supervised machine learning techniques. The International Journal of Acoustics and Vibration. 27(2):100-105. https://doi.org/10.20855/ijav.2022.27.21836 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.20855/ijav.2022.27.21836 | es_ES |
dc.description.upvformatpinicio | 100 | es_ES |
dc.description.upvformatpfin | 105 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 27 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\466329 | es_ES |
dc.subject.ods | 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos | es_ES |