Mostrar el registro completo del ítem
Barrachina, S.; Castelló, A.; Dolz, MF.; Tomás Domínguez, AE. (2022). BestOf: an online implementation selector for the training and inference of deep neural networks. The Journal of Supercomputing. 78(16):17543-17558. https://doi.org/10.1007/s11227-022-04577-2
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/202837
Título: | BestOf: an online implementation selector for the training and inference of deep neural networks | |
Autor: | Barrachina, Sergio Dolz, Manuel F. | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Tuning and optimising the operations executed in deep learning frameworks is a fundamental task in accelerating the processing of deep neural networks (DNNs). However, this optimisation usually requires extensive ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1007/s11227-022-04577-2 | |
Código del Proyecto: |
|
|
Agradecimientos: |
This research was funded by Project PID2020-113656RB-C21/C22 supported by MCIN/AEI/10.13039/501100011033. Manuel F. Dolz was also supported by the Plan Gen-T grant CDEIGENT/2018/014 of the Generalitat Valenciana. Adrian ...[+]
|
|
Tipo: |
|