- -

BestOf: an online implementation selector for the training and inference of deep neural networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

BestOf: an online implementation selector for the training and inference of deep neural networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barrachina, Sergio es_ES
dc.contributor.author Castelló, Adrián es_ES
dc.contributor.author Dolz, Manuel F. es_ES
dc.contributor.author Tomás Domínguez, Andrés Enrique es_ES
dc.date.accessioned 2024-02-28T19:04:36Z
dc.date.available 2024-02-28T19:04:36Z
dc.date.issued 2022-05-20 es_ES
dc.identifier.issn 0920-8542 es_ES
dc.identifier.uri http://hdl.handle.net/10251/202837
dc.description.abstract [EN] Tuning and optimising the operations executed in deep learning frameworks is a fundamental task in accelerating the processing of deep neural networks (DNNs). However, this optimisation usually requires extensive manual efforts in order to obtain the best performance for each combination of tensor input size, layer type, and hardware platform. In this work, we present BestOf, a novel online auto-tuner that optimises the training and inference phases of DNNs. BestOf automatically selects at run time, and among the provided alternatives, the best performing implementation in each layer according to gathered profiling data. The evaluation of BestOf is performed on multi-core architectures for different DNNs using PyDTNN, a lightweight library for distributed training and inference. The experimental results reveal that the BestOf auto-tuner delivers the same or higher performance than that achieved using a static selection approach. es_ES
dc.description.sponsorship This research was funded by Project PID2020-113656RB-C21/C22 supported by MCIN/AEI/10.13039/501100011033. Manuel F. Dolz was also supported by the Plan Gen-T grant CDEIGENT/2018/014 of the Generalitat Valenciana. Adrian Castello is a FJC2019-039222-I fellow supported by MCIN/AEI/ 10.13039/501100011033. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof The Journal of Supercomputing es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Deep neural networks es_ES
dc.subject Auto-tuning es_ES
dc.subject Implementation selector es_ES
dc.subject Python es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title BestOf: an online implementation selector for the training and inference of deep neural networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11227-022-04577-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113656RB-C22/ES/COMPUTACION Y COMUNICACIONES DE ALTAS PRESTACIONES CONSCIENTES DEL CONSUMO ENERGETICO. APLICACIONES AL APRENDIZAJE PROFUNDO COMPUTACIONAL - UPV/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//FJC2019-039222-I//AYUDA JUAN DE LA CIERVA FORMACION-CASTELLO GIMENO, ADRIAN/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//CDEIGENT%2F2018%2F014//Plan GenT/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Barrachina, S.; Castelló, A.; Dolz, MF.; Tomás Domínguez, AE. (2022). BestOf: an online implementation selector for the training and inference of deep neural networks. The Journal of Supercomputing. 78(16):17543-17558. https://doi.org/10.1007/s11227-022-04577-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11227-022-04577-2 es_ES
dc.description.upvformatpinicio 17543 es_ES
dc.description.upvformatpfin 17558 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 78 es_ES
dc.description.issue 16 es_ES
dc.relation.pasarela S\468499 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem