- -

Singularity in higher education: Methods for detection and classification

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Singularity in higher education: Methods for detection and classification

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lara-Navarra, Pablo es_ES
dc.contributor.author Sánchez Pérez, Enrique Alfonso es_ES
dc.contributor.author Ferrer Sapena, Antonia es_ES
dc.contributor.author Fitó-Bertran, Angels es_ES
dc.date.accessioned 2024-04-11T06:14:16Z
dc.date.available 2024-04-11T06:14:16Z
dc.date.issued 2024-04-01 es_ES
dc.identifier.issn 0957-4174 es_ES
dc.identifier.uri http://hdl.handle.net/10251/203279
dc.description.abstract [EN] In a complex world, the education field needs to advance learning challenges that generate new dynamics of innovation and promote their detection in order to disseminate them as benchmarks for differentiated teaching. This work presents a tool that identifies and categorizes singular elements in the university system to build new disruptive educational proposals in the face of future challenges. In this sense, this article develops a methodology for the collection and analysis of information from a sample of a group of 55 schools recognized for their innovative practices. A model is defined, based on an evaluation of 16 variables that relate to the characteristics of the schools and how they operate. Using statistical techniques and artificial intelligence to process the data obtained, we conclude that there are four prototypical models into which the singularity of the schools can be classified. In addition, we analyzed which of the variables initially considered in the model are actually significant, suggesting an improvement to the initial model based on the experimental data. The result aims to provide a useful tool to analyze the schools' models and levels of innovation, and allow them to focus on which direction they want to take their upgrade strategies. es_ES
dc.description.sponsorship This work was supported by the eLearning Innovation Center of the Universitat Oberta de Catalunya (eLinC) . The authors would like to thank the grant PID2019-105708RB "Stable methodologies to evaluate and measure quality, interoperability, blockchain, and reuse of open data in the agricultural field: DATAUSE" funded by MCIN/AEI/https://doi.org/10.13039/501100011033. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Expert Systems with Applications es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Educational singularity es_ES
dc.subject Disruptive education es_ES
dc.subject Higher education es_ES
dc.subject Artificial intelligence es_ES
dc.subject Innovation learning es_ES
dc.subject.classification BIBLIOTECONOMIA Y DOCUMENTACION es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Singularity in higher education: Methods for detection and classification es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.eswa.2023.122306 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105708RB-C21/ES/SP1: DATAUSE STABLE METHODOLOGIES TO EVALUATE AND MEASURE QUALITY, INTEROPERABILITY, BLOCKCHAIN AND REUSE OF OPEN DATA IN THE AGRICULTURAL FIELD/ es_ES
dc.rights.accessRights Embargado es_ES
dc.date.embargoEndDate 2025-10-30 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.contributor.affiliation Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses es_ES
dc.description.bibliographicCitation Lara-Navarra, P.; Sánchez Pérez, EA.; Ferrer Sapena, A.; Fitó-Bertran, A. (2024). Singularity in higher education: Methods for detection and classification. Expert Systems with Applications. 239:1-14. https://doi.org/10.1016/j.eswa.2023.122306 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.eswa.2023.122306 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 239 es_ES
dc.relation.pasarela S\509255 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem