- -

MRI texture-based radiomics analysis for the identification of altered functional networks in alcoholic patients and animal models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

MRI texture-based radiomics analysis for the identification of altered functional networks in alcoholic patients and animal models

Mostrar el registro completo del ítem

Ruiz-España, S.; Ortiz-Ramón, R.; Pérez-Ramírez, MÚ.; Díaz-Parra, A.; Ciccocioppo, R.; Bach, P.; Vollstädt-Klein, S.... (2023). MRI texture-based radiomics analysis for the identification of altered functional networks in alcoholic patients and animal models. Computerized Medical Imaging and Graphics. 104. https://doi.org/10.1016/j.compmedimag.2023.102187

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/203363

Ficheros en el ítem

Metadatos del ítem

Título: MRI texture-based radiomics analysis for the identification of altered functional networks in alcoholic patients and animal models
Autor: Ruiz-España, Silvia Ortiz-Ramón, Rafael Pérez-Ramírez, María Úrsula Díaz-Parra, Antonio Ciccocioppo, Roberto Bach, Patrick Vollstädt-Klein, Sabine Kiefer, Falk Sommer, Wolfgang H. Canals, Santiago Moratal, David
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Fecha difusión:
Resumen:
[EN] Alcohol use disorder (AUD) is a complex condition representing a leading risk factor for death, disease and disability. Its high prevalence and severe health consequences make necessary a better understanding of the ...[+]
Palabras clave: Alcohol use disorders , Brain MRI , Striatal network , Radiomics , Standardized radiomic features , Classification algorithms
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Computerized Medical Imaging and Graphics. (issn: 0895-6111 )
DOI: 10.1016/j.compmedimag.2023.102187
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.compmedimag.2023.102187
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/668863/EU
Agradecimientos:
This work was supported by the European Union's Horizon 2020 research and innovation program (668863-SyBil-AA) and the ERA-NET NEURON program (FKZ 01EW1112-TRANSALC and PIM2010ERN-00679), as well as the Spanish State ...[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem