- -

Real-Time Energy Management Strategy of a Fuel Cell Electric Vehicle With Global Optimal Learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Real-Time Energy Management Strategy of a Fuel Cell Electric Vehicle With Global Optimal Learning

Mostrar el registro completo del ítem

Hou, S.; Yin, H.; Pla Moreno, B.; Gao, J.; Chen, H. (2023). Real-Time Energy Management Strategy of a Fuel Cell Electric Vehicle With Global Optimal Learning. IEEE Transactions on Transportation Electrification (Online). 9(4):5085-5097. https://doi.org/10.1109/TTE.2023.3238101

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/203559

Ficheros en el ítem

Metadatos del ítem

Título: Real-Time Energy Management Strategy of a Fuel Cell Electric Vehicle With Global Optimal Learning
Autor: Hou, Shengyan Yin, Hai Pla Moreno, Benjamín Gao, Jinwu Chen, Hong
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Fecha difusión:
Resumen:
[EN] This article proposes a novel energy management strategy (EMS) for a fuel cell electric vehicle (FCEV). The strategy combines the offline optimization and online algorithms to guarantee optimal control, real-time ...[+]
Palabras clave: Energy management , Batteries , Fuel cells , State of charge , Optimization , Dynamic programming , Electric vehicles , Battery capacity sensitivity , Dynamic programming (DP) , Fuel cell electric vehicles (FCEVs) , Fuzzy rule learning (FRL)
Derechos de uso: Reserva de todos los derechos
Fuente:
IEEE Transactions on Transportation Electrification (Online). (eissn: 2332-7782 )
DOI: 10.1109/TTE.2023.3238101
Editorial:
Institute of Electrical and Electronics Engineers
Versión del editor: https://doi.org/10.1109/TTE.2023.3238101
Código del Proyecto:
info:eu-repo/grantAgreement/NSFC//62111530196/
info:eu-repo/grantAgreement/NSFC//20210201111GX/
info:eu-repo/grantAgreement/China Automobile Industry Innovation and Development Joint Fund//U1864206/
Agradecimientos:
This work was supported in part by the National Natural Science Foundation of China under Grant 62111530196, in part by the Technology Development Program of Jilin Province under Grant 20210201111GX, and in part by the ...[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem