- -

Real-Time Energy Management Strategy of a Fuel Cell Electric Vehicle With Global Optimal Learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Real-Time Energy Management Strategy of a Fuel Cell Electric Vehicle With Global Optimal Learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hou, Shengyan es_ES
dc.contributor.author Yin, Hai es_ES
dc.contributor.author Pla Moreno, Benjamín es_ES
dc.contributor.author Gao, Jinwu es_ES
dc.contributor.author Chen, Hong es_ES
dc.date.accessioned 2024-04-17T18:14:17Z
dc.date.available 2024-04-17T18:14:17Z
dc.date.issued 2023-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/203559
dc.description.abstract [EN] This article proposes a novel energy management strategy (EMS) for a fuel cell electric vehicle (FCEV). The strategy combines the offline optimization and online algorithms to guarantee optimal control, real-time performance, and better robustness in an unknown route. In particular, dynamic programming (DP) is applied in a database with multiple driving cycles to extract the theoretically optimal power split between the battery and fuel cell with a priori knowledge of the driving conditions. The analysis of the obtained results is then used to extract the rules to embed them in a real-time capable fuzzy controller. In this sense, at the expense of certain calibration effort in the offline phase with the DP results, the proposed strategy allows on-board applicability with suboptimal results. The proposed strategy has been tested in several actual driving cycles, and the results show energy savings between 8.48% and 10.71% in comparison to rule-based strategy and energy penalties between 1.04% and 3.37% when compared with the theoretical optimum obtained by DP. In addition, a sensitivity analysis shows that the proposed strategy can be adapted to different vehicle configurations. As the battery capacity increases, the performance can be further improved by 0.15% and 1.66% in conservative and aggressive driving styles, respectively. es_ES
dc.description.sponsorship This work was supported in part by the National Natural Science Foundation of China under Grant 62111530196, in part by the Technology Development Program of Jilin Province under Grant 20210201111GX, and in part by the China Automobile Industry Innovation and Development Joint Fund under Grant U1864206. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Transactions on Transportation Electrification (Online) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Energy management es_ES
dc.subject Batteries es_ES
dc.subject Fuel cells es_ES
dc.subject State of charge es_ES
dc.subject Optimization es_ES
dc.subject Dynamic programming es_ES
dc.subject Electric vehicles es_ES
dc.subject Battery capacity sensitivity es_ES
dc.subject Dynamic programming (DP) es_ES
dc.subject Fuel cell electric vehicles (FCEVs) es_ES
dc.subject Fuzzy rule learning (FRL) es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Real-Time Energy Management Strategy of a Fuel Cell Electric Vehicle With Global Optimal Learning es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TTE.2023.3238101 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//62111530196/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//20210201111GX/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/China Automobile Industry Innovation and Development Joint Fund//U1864206/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Hou, S.; Yin, H.; Pla Moreno, B.; Gao, J.; Chen, H. (2023). Real-Time Energy Management Strategy of a Fuel Cell Electric Vehicle With Global Optimal Learning. IEEE Transactions on Transportation Electrification (Online). 9(4):5085-5097. https://doi.org/10.1109/TTE.2023.3238101 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/TTE.2023.3238101 es_ES
dc.description.upvformatpinicio 5085 es_ES
dc.description.upvformatpfin 5097 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2332-7782 es_ES
dc.relation.pasarela S\512436 es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder China Automobile Industry Innovation and Development Joint Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem