Mostrar el registro completo del ítem
Ruescas Nicolau, AV.; Medina Ripoll, E.; De Rosario Martínez, H.; Sanchiz Navarro, J.; Parrilla Bernabé, E.; Juan, M. (2024). A Deep Learning Model for Markerless Pose Estimation Based on Keypoint Augmentation: What Factors Influence Errors in Biomechanical Applications?. Sensors. 24(6). https://doi.org/10.3390/s24061923
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/203678
Título: | A Deep Learning Model for Markerless Pose Estimation Based on Keypoint Augmentation: What Factors Influence Errors in Biomechanical Applications? | |
Autor: | RUESCAS NICOLAU, ANA VIRGINIA Medina Ripoll, Enrique De Rosario Martínez, Helios Sanchiz Navarro, Joaquin Parrilla Bernabé, Eduardo | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] In biomechanics, movement is typically recorded by tracking the trajectories of anatomical landmarks previously marked using passive instrumentation, which entails several inconveniences. To overcome these disadvantages, ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.3390/s24061923 | |
Código del Proyecto: |
|
|
Agradecimientos: |
Research activity supported by Instituto Valenciano de Competitividad Empresarial
(IVACE) and Valencian Regional Government (GVA), IMAMCA/2024; and project IMDEEA/2024,
funding requested to Instituto Valenciano de ...[+]
|
|
Tipo: |
|