- -

A Deep Learning Model for Markerless Pose Estimation Based on Keypoint Augmentation: What Factors Influence Errors in Biomechanical Applications?

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Deep Learning Model for Markerless Pose Estimation Based on Keypoint Augmentation: What Factors Influence Errors in Biomechanical Applications?

Mostrar el registro completo del ítem

Ruescas Nicolau, AV.; Medina Ripoll, E.; De Rosario Martínez, H.; Sanchiz Navarro, J.; Parrilla Bernabé, E.; Juan, M. (2024). A Deep Learning Model for Markerless Pose Estimation Based on Keypoint Augmentation: What Factors Influence Errors in Biomechanical Applications?. Sensors. 24(6). https://doi.org/10.3390/s24061923

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/203678

Ficheros en el ítem

Metadatos del ítem

Título: A Deep Learning Model for Markerless Pose Estimation Based on Keypoint Augmentation: What Factors Influence Errors in Biomechanical Applications?
Autor: RUESCAS NICOLAU, ANA VIRGINIA Medina Ripoll, Enrique De Rosario Martínez, Helios Sanchiz Navarro, Joaquin Parrilla Bernabé, Eduardo Juan, M.-Carmen
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Fecha difusión:
Resumen:
[EN] In biomechanics, movement is typically recorded by tracking the trajectories of anatomical landmarks previously marked using passive instrumentation, which entails several inconveniences. To overcome these disadvantages, ...[+]
Palabras clave: Markerless , Deep learning , Anatomical landmark , Human pose estimation , Biomechanics , Keypoint augmentation
Derechos de uso: Reconocimiento (by)
Fuente:
Sensors. (eissn: 1424-8220 )
DOI: 10.3390/s24061923
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/s24061923
Código del Proyecto:
info:eu-repo/grantAgreement/IVACE//IMAMCA%2F2024/
info:eu-repo/grantAgreement/IVACE//IMDEEA%2F2024/
Agradecimientos:
Research activity supported by Instituto Valenciano de Competitividad Empresarial (IVACE) and Valencian Regional Government (GVA), IMAMCA/2024; and project IMDEEA/2024, funding requested to Instituto Valenciano de ...[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem