- -

A Deep Learning Model for Markerless Pose Estimation Based on Keypoint Augmentation: What Factors Influence Errors in Biomechanical Applications?

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Deep Learning Model for Markerless Pose Estimation Based on Keypoint Augmentation: What Factors Influence Errors in Biomechanical Applications?

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author RUESCAS NICOLAU, ANA VIRGINIA es_ES
dc.contributor.author Medina Ripoll, Enrique es_ES
dc.contributor.author De Rosario Martínez, Helios es_ES
dc.contributor.author Sanchiz Navarro, Joaquin es_ES
dc.contributor.author Parrilla Bernabé, Eduardo es_ES
dc.contributor.author Juan, M.-Carmen es_ES
dc.date.accessioned 2024-04-22T18:06:57Z
dc.date.available 2024-04-22T18:06:57Z
dc.date.issued 2024-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/203678
dc.description.abstract [EN] In biomechanics, movement is typically recorded by tracking the trajectories of anatomical landmarks previously marked using passive instrumentation, which entails several inconveniences. To overcome these disadvantages, researchers are exploring different markerless methods, such as pose estimation networks, to capture movement with equivalent accuracy to marker-based photogrammetry. However, pose estimation models usually only provide joint centers, which are incomplete data for calculating joint angles in all anatomical axes. Recently, marker augmentation models based on deep learning have emerged. These models transform pose estimation data into complete anatomical data. Building on this concept, this study presents three marker augmentation models of varying complexity that were compared to a photogrammetry system. The errors in anatomical landmark positions and the derived joint angles were calculated, and a statistical analysis of the errors was performed to identify the factors that most influence their magnitude. The proposed Transformer model improved upon the errors reported in the literature, yielding position errors of less than 1.5 cm for anatomical landmarks and 4.4 degrees for all seven movements evaluated. Anthropometric data did not influence the errors, while anatomical landmarks and movement influenced position errors, and model, rotation axis, and movement influenced joint angle errors. es_ES
dc.description.sponsorship Research activity supported by Instituto Valenciano de Competitividad Empresarial (IVACE) and Valencian Regional Government (GVA), IMAMCA/2024; and project IMDEEA/2024, funding requested to Instituto Valenciano de Competitividad Empresarial (IVACE), call for proposals 2024, for Technology Centers of the Valencian Region, funded by European Union. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Markerless es_ES
dc.subject Deep learning es_ES
dc.subject Anatomical landmark es_ES
dc.subject Human pose estimation es_ES
dc.subject Biomechanics es_ES
dc.subject Keypoint augmentation es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title A Deep Learning Model for Markerless Pose Estimation Based on Keypoint Augmentation: What Factors Influence Errors in Biomechanical Applications? es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s24061923 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/IVACE//IMAMCA%2F2024/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/IVACE//IMDEEA%2F2024/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Ruescas Nicolau, AV.; Medina Ripoll, E.; De Rosario Martínez, H.; Sanchiz Navarro, J.; Parrilla Bernabé, E.; Juan, M. (2024). A Deep Learning Model for Markerless Pose Estimation Based on Keypoint Augmentation: What Factors Influence Errors in Biomechanical Applications?. Sensors. 24(6). https://doi.org/10.3390/s24061923 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s24061923 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 6 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 38544186 es_ES
dc.identifier.pmcid PMC10974619 es_ES
dc.relation.pasarela S\511979 es_ES
dc.contributor.funder Institut Valencià de Competitivitat Empresarial es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem