Mostrar el registro completo del ítem
De Curtò, J.; De Zarzà, I.; Roig, G.; Cano, J.; Manzoni, P.; Tavares De Araujo Cesariny Calafate, CM. (2023). LLM-Informed Multi-Armed Bandit Strategies for Non-Stationary Environments. Electronics. 12(13). https://doi.org/10.3390/electronics12132814
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/203936
Título: | LLM-Informed Multi-Armed Bandit Strategies for Non-Stationary Environments | |
Autor: | de Curtò, J. de Zarzà, Irene Roig, Gemma | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] In this paper, we introduce an innovative approach to handling the multi-armed bandit (MAB) problem in non-stationary environments, harnessing the predictive power of large language models (LLMs). With the realization ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.3390/electronics12132814 | |
Código del Proyecto: |
|
|
Agradecimientos: |
We acknowledge the support of Universitat Politècnica de València: R&D project PID2021-122580NB-I00, funded by MCIN/AEI/10.13039/501100011033 and ERDF. We thank the following funding sources from GOETHE-University Frankfurt ...[+]
|
|
Tipo: |
|