- -

Which information derived from the Coma Recovery Scale-Revised provides the most reliable prediction of clinical diagnosis and recovery of consciousness? A comparative study using machine learning techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Which information derived from the Coma Recovery Scale-Revised provides the most reliable prediction of clinical diagnosis and recovery of consciousness? A comparative study using machine learning techniques

Mostrar el registro completo del ítem

Campagnini, S.; Llorens Rodríguez, R.; Navarro, MD.; Colomer, C.; Mannini, A.; Estraneo, A.; Ferri, J.... (2024). Which information derived from the Coma Recovery Scale-Revised provides the most reliable prediction of clinical diagnosis and recovery of consciousness? A comparative study using machine learning techniques. European Journal of Physical and Rehabilitation Medicine. https://doi.org/10.23736/S1973-9087.23.08093-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/204056

Ficheros en el ítem

Metadatos del ítem

Título: Which information derived from the Coma Recovery Scale-Revised provides the most reliable prediction of clinical diagnosis and recovery of consciousness? A comparative study using machine learning techniques
Autor: Campagnini, Silvia Llorens Rodríguez, Roberto Navarro, M. Dolores Colomer, Carolina Mannini, Andrea Estraneo, Anna Ferri, Joan Noé, Enrique
Fecha difusión:
Resumen:
[EN] BACKGROUND: The Coma Recovery Scale-Revised (CRS-R) is the most recommended clinical tool to examine the neurobehavioral condition of individuals with disorders of consciousness (DOCs). Different studies have investigated ...[+]
Palabras clave: Consciousness disorders , Persistent vegetative state , Brain concussion , Prognosis , Machine learning
Derechos de uso: Reconocimiento - No comercial (by-nc)
Fuente:
European Journal of Physical and Rehabilitation Medicine. (issn: 1973-9087 )
DOI: 10.23736/S1973-9087.23.08093-0
Editorial:
Minerva Medica
Versión del editor: https://doi.org/10.23736/S1973-9087.23.08093-0
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/778234/EU/Disorders of Consciousness (DoC): enhancing the transfer of knowledge and professional skills on evidence-based interventions and validated technology for a better management of patients/
info:eu-repo/grantAgreement/GVA//CIDEXG%2F2022%2F15/
Agradecimientos:
This study was supported by the European Commission (EU-H2020-MSCA-RISE-778234) and the Conselleria d'Innovacio, Universitats, Ciencia i Societat Digital of Generalitat Valenciana (CIDEXG/2022/15) .
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem