- -

Vehicular Network Intrusion Detection Using a Cascaded Deep Learning Approach with Multi-Variant Metaheuristic

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Vehicular Network Intrusion Detection Using a Cascaded Deep Learning Approach with Multi-Variant Metaheuristic

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Manderna, Ankit es_ES
dc.contributor.author Kumar, Sushil es_ES
dc.contributor.author Dohare, Upasana es_ES
dc.contributor.author Aljaidi, Mohammad es_ES
dc.contributor.author Kaiwartya, Omprakash es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2024-05-15T18:08:48Z
dc.date.available 2024-05-15T18:08:48Z
dc.date.issued 2023-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/204175
dc.description.abstract [EN] Vehicle malfunctions have a direct impact on both human and road safety, making vehicle network security an important and critical challenge. Vehicular ad hoc networks (VANETs) have grown to be indispensable in recent years for enabling intelligent transport systems, guaranteeing traffic safety, and averting collisions. However, because of numerous types of assaults, such as Distributed Denial of Service (DDoS) and Denial of Service (DoS), VANETs have significant difficulties. A powerful Network Intrusion Detection System (NIDS) powered by Artificial Intelligence (AI) is required to overcome these security issues. This research presents an innovative method for creating an AI-based NIDS that uses Deep Learning methods. The suggested model specifically incorporates the Self Attention-Based Bidirectional Long Short-Term Memory (SA-BiLSTM) for classification and the Cascaded Convolution Neural Network (CCNN) for learning high-level features. The Multi-variant Gradient-Based Optimization algorithm (MV-GBO) is applied to improve CCNN and SA-BiLSTM further to enhance the model's performance. Additionally, information gained using MV-GBO-based feature extraction is employed to enhance feature learning. The effectiveness of the proposed model is evaluated on reliable datasets such as KDD-CUP99, ToN-IoT, and VeReMi, which are utilized on the MATLAB platform. The proposed model achieved 99% accuracy on all the datasets. es_ES
dc.description.sponsorship This work is supported by the SC&SS, Jawaharlal Nehru University, New Delhi, India. This research is supported by the B11 unit of assessment, Centre for Computing and Informatics Research Centre, Department of Computer Science, Nottingham Trent University, UK. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject VANET es_ES
dc.subject Intrusion detection es_ES
dc.subject Deep learning es_ES
dc.subject Long short-term memory es_ES
dc.subject Convolution neural network es_ES
dc.subject.classification INGENIERÍA TELEMÁTICA es_ES
dc.title Vehicular Network Intrusion Detection Using a Cascaded Deep Learning Approach with Multi-Variant Metaheuristic es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s23218772 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Manderna, A.; Kumar, S.; Dohare, U.; Aljaidi, M.; Kaiwartya, O.; Lloret, J. (2023). Vehicular Network Intrusion Detection Using a Cascaded Deep Learning Approach with Multi-Variant Metaheuristic. Sensors. 23(21). https://doi.org/10.3390/s23218772 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s23218772 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 21 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 37960470 es_ES
dc.identifier.pmcid PMC10650029 es_ES
dc.relation.pasarela S\513585 es_ES
dc.contributor.funder Jawaharlal Nehru University es_ES
dc.contributor.funder Nottingham Trent University es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem