Mostrar el registro sencillo del ítem
dc.contributor.author | Manderna, Ankit | es_ES |
dc.contributor.author | Kumar, Sushil | es_ES |
dc.contributor.author | Dohare, Upasana | es_ES |
dc.contributor.author | Aljaidi, Mohammad | es_ES |
dc.contributor.author | Kaiwartya, Omprakash | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.date.accessioned | 2024-05-15T18:08:48Z | |
dc.date.available | 2024-05-15T18:08:48Z | |
dc.date.issued | 2023-11 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/204175 | |
dc.description.abstract | [EN] Vehicle malfunctions have a direct impact on both human and road safety, making vehicle network security an important and critical challenge. Vehicular ad hoc networks (VANETs) have grown to be indispensable in recent years for enabling intelligent transport systems, guaranteeing traffic safety, and averting collisions. However, because of numerous types of assaults, such as Distributed Denial of Service (DDoS) and Denial of Service (DoS), VANETs have significant difficulties. A powerful Network Intrusion Detection System (NIDS) powered by Artificial Intelligence (AI) is required to overcome these security issues. This research presents an innovative method for creating an AI-based NIDS that uses Deep Learning methods. The suggested model specifically incorporates the Self Attention-Based Bidirectional Long Short-Term Memory (SA-BiLSTM) for classification and the Cascaded Convolution Neural Network (CCNN) for learning high-level features. The Multi-variant Gradient-Based Optimization algorithm (MV-GBO) is applied to improve CCNN and SA-BiLSTM further to enhance the model's performance. Additionally, information gained using MV-GBO-based feature extraction is employed to enhance feature learning. The effectiveness of the proposed model is evaluated on reliable datasets such as KDD-CUP99, ToN-IoT, and VeReMi, which are utilized on the MATLAB platform. The proposed model achieved 99% accuracy on all the datasets. | es_ES |
dc.description.sponsorship | This work is supported by the SC&SS, Jawaharlal Nehru University, New Delhi, India. This research is supported by the B11 unit of assessment, Centre for Computing and Informatics Research Centre, Department of Computer Science, Nottingham Trent University, UK. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | VANET | es_ES |
dc.subject | Intrusion detection | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Long short-term memory | es_ES |
dc.subject | Convolution neural network | es_ES |
dc.subject.classification | INGENIERÍA TELEMÁTICA | es_ES |
dc.title | Vehicular Network Intrusion Detection Using a Cascaded Deep Learning Approach with Multi-Variant Metaheuristic | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s23218772 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia | es_ES |
dc.description.bibliographicCitation | Manderna, A.; Kumar, S.; Dohare, U.; Aljaidi, M.; Kaiwartya, O.; Lloret, J. (2023). Vehicular Network Intrusion Detection Using a Cascaded Deep Learning Approach with Multi-Variant Metaheuristic. Sensors. 23(21). https://doi.org/10.3390/s23218772 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s23218772 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 23 | es_ES |
dc.description.issue | 21 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.identifier.pmid | 37960470 | es_ES |
dc.identifier.pmcid | PMC10650029 | es_ES |
dc.relation.pasarela | S\513585 | es_ES |
dc.contributor.funder | Jawaharlal Nehru University | es_ES |
dc.contributor.funder | Nottingham Trent University | es_ES |