Mostrar el registro completo del ítem
Manderna, A.; Kumar, S.; Dohare, U.; Aljaidi, M.; Kaiwartya, O.; Lloret, J. (2023). Vehicular Network Intrusion Detection Using a Cascaded Deep Learning Approach with Multi-Variant Metaheuristic. Sensors. 23(21). https://doi.org/10.3390/s23218772
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/204175
Título: | Vehicular Network Intrusion Detection Using a Cascaded Deep Learning Approach with Multi-Variant Metaheuristic | |
Autor: | Manderna, Ankit Kumar, Sushil Dohare, Upasana Aljaidi, Mohammad Kaiwartya, Omprakash | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Vehicle malfunctions have a direct impact on both human and road safety, making vehicle network security an important and critical challenge. Vehicular ad hoc networks (VANETs) have grown to be indispensable in recent ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.3390/s23218772 | |
Agradecimientos: |
This work is supported by the SC&SS, Jawaharlal Nehru University, New Delhi, India. This research is supported by the B11 unit of assessment, Centre for Computing and
Informatics Research Centre, Department of Computer ...[+]
|
|
Tipo: |
|