- -

Vehicular Network Intrusion Detection Using a Cascaded Deep Learning Approach with Multi-Variant Metaheuristic

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Vehicular Network Intrusion Detection Using a Cascaded Deep Learning Approach with Multi-Variant Metaheuristic

Mostrar el registro completo del ítem

Manderna, A.; Kumar, S.; Dohare, U.; Aljaidi, M.; Kaiwartya, O.; Lloret, J. (2023). Vehicular Network Intrusion Detection Using a Cascaded Deep Learning Approach with Multi-Variant Metaheuristic. Sensors. 23(21). https://doi.org/10.3390/s23218772

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/204175

Ficheros en el ítem

Metadatos del ítem

Título: Vehicular Network Intrusion Detection Using a Cascaded Deep Learning Approach with Multi-Variant Metaheuristic
Autor: Manderna, Ankit Kumar, Sushil Dohare, Upasana Aljaidi, Mohammad Kaiwartya, Omprakash Lloret, Jaime
Entidad UPV: Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia
Fecha difusión:
Resumen:
[EN] Vehicle malfunctions have a direct impact on both human and road safety, making vehicle network security an important and critical challenge. Vehicular ad hoc networks (VANETs) have grown to be indispensable in recent ...[+]
Palabras clave: VANET , Intrusion detection , Deep learning , Long short-term memory , Convolution neural network
Derechos de uso: Reconocimiento (by)
Fuente:
Sensors. (eissn: 1424-8220 )
DOI: 10.3390/s23218772
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/s23218772
Agradecimientos:
This work is supported by the SC&SS, Jawaharlal Nehru University, New Delhi, India. This research is supported by the B11 unit of assessment, Centre for Computing and Informatics Research Centre, Department of Computer ...[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem