- -

Comprehensive Method for Obtaining Multi-Fidelity Surrogate Models for Design Space Approximation: Application to Multi-Dimensional Simulations of Condensation Due to Mixing Streams

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comprehensive Method for Obtaining Multi-Fidelity Surrogate Models for Design Space Approximation: Application to Multi-Dimensional Simulations of Condensation Due to Mixing Streams

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Galindo, José es_ES
dc.contributor.author Navarro, Roberto es_ES
dc.contributor.author Moya, Francisco es_ES
dc.contributor.author Conchado Peiró, Andrea es_ES
dc.date.accessioned 2024-05-23T18:06:02Z
dc.date.available 2024-05-23T18:06:02Z
dc.date.issued 2023-05-23 es_ES
dc.identifier.uri http://hdl.handle.net/10251/204399
dc.description.abstract [EN] In engineering problems, design space approximation using accurate computational models may require conducting a simulation for each explored working point, which is often not feasible in computational terms. For problems with numerous parameters and computationally demanding simulations, the possibility of resorting to multi-fidelity surrogates arises as a means to alleviate the effort by employing a reduced number of high-fidelity and expensive simulations and predicting a much cheaper low-fidelity model. A multi-fidelity approach for design space approximation is therefore proposed, requiring two different designs of experiments to assess the best combination of surrogate models and an intermediate meta-modeled variable. The strategy is applied to the prediction of condensation that occurs when two humid air streams are mixed in a three-way junction, which occurs when using low-pressure exhaust gas recirculation to reduce piston engine emissions. In this particular case, most of the assessed combinations of surrogate and intermediate variables provide a good agreement between observed and predicted values, resulting in the lowest normalized mean absolute error (3.4%) by constructing a polynomial response surface using a multi-fidelity additive scaling variable that calculates the difference between the low-fidelity and high-fidelity predictions of the condensation mass flow rate. es_ES
dc.description.sponsorship Francisco Moya is partially supported through a FPI-GVA-ACIF-2019 grant of the Government of Generalitat Valenciana and the European Social Fund. This work has been partially supported by "Vicerrectorado de Investigacion de la Universitat Politecnica de Valencia" through grant number PAID-11-21. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Surrogate modeling es_ES
dc.subject Multi-fidelity simulations es_ES
dc.subject Design of experiments es_ES
dc.subject Design space exploration es_ES
dc.subject Condensation es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Comprehensive Method for Obtaining Multi-Fidelity Surrogate Models for Design Space Approximation: Application to Multi-Dimensional Simulations of Condensation Due to Mixing Streams es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app13116361 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//ACIF%2F2019%2F026//AYUDA PREDOCTORAL GVA-MOYA TORRES. PROYECTO: CONTRIBUCION AL MODELADO DE LA CONDENSACION DE AGUA EN EL SISTEMA DE EGR DE BAJA PRESION EN OPERACION A BAJA TEMPERATURA./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV-VIN//AYUDA PAID-11-21//ANALISIS DE LA CONDENSACION EN PROCESOS DE ENFRIAMIENTO Y MEZCLAS DE FLUJOS HUMEDOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Galindo, J.; Navarro, R.; Moya, F.; Conchado Peiró, A. (2023). Comprehensive Method for Obtaining Multi-Fidelity Surrogate Models for Design Space Approximation: Application to Multi-Dimensional Simulations of Condensation Due to Mixing Streams. Applied Sciences. 13(11). https://doi.org/10.3390/app13116361 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app13116361 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\515630 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder UNIVERSIDAD POLITECNICA DE VALENCIA es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem