- -

End-to-End page-Level assessment of handwritten text recognition

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

End-to-End page-Level assessment of handwritten text recognition

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vidal, Enrique es_ES
dc.contributor.author Toselli, Alejandro Héctor es_ES
dc.contributor.author Ríos-Vila, Antonio es_ES
dc.contributor.author Calvo-Zaragoza, Jorge es_ES
dc.date.accessioned 2024-06-10T18:23:32Z
dc.date.available 2024-06-10T18:23:32Z
dc.date.issued 2023-06 es_ES
dc.identifier.issn 0031-3203 es_ES
dc.identifier.uri http://hdl.handle.net/10251/204928
dc.description.abstract [EN] The evaluation of Handwritten Text Recognition (HTR) systems has traditionally used metrics based on the edit distance between HTR and ground truth (GT) transcripts, at both the character and word levels. This is very adequate when the experimental protocol assumes that both GT and HTR text lines are the same, which allows edit distances to be independently computed to each given line. Driven by recent ad-vances in pattern recognition, HTR systems increasingly face the end-to-end page-level transcription of a document, where the precision of locating the different text lines and their corresponding reading order (RO) play a key role. In such a case, the standard metrics do not take into account the inconsistencies that might appear. In this paper, the problem of evaluating HTR systems at the page level is introduced in detail. We analyse the convenience of using a two-fold evaluation, where the transcription accuracy and the RO goodness are considered separately. Different alternatives are proposed, analysed and empir-ically compared both through partially simulated and through real, full end-to-end experiments. Results support the validity of the proposed two-fold evaluation approach. An important conclusion is that such an evaluation can be adequately achieved by just two simple and well-known metrics: the Word Error Rate (WER), that takes transcription sequentiality into account, and the here re-formulated Bag of Words Word Error Rate (bWER), that ignores order. While the latter directly and very accurately assess intrin-sic word recognition errors, the difference between both metrics (AWER) gracefully correlates with the Normalised Spearman's Foot Rule Distance (NSFD), a metric which explicitly measures RO errors associ-ated with layout analysis flaws. To arrive to these conclusions, we have introduced another metric called Hungarian Word Word Rate (hWER), based on a here proposed regularised version of the Hungarian Al-gorithm. This metric is shown to be always almost identical to bWER and both bWER and hWER are also almost identical to WER whenever HTR transcripts and GT references are guarantee to be in the same RO. es_ES
dc.description.sponsorship This paper is part of the I+D+i projects: PID2020-118447RA-I00 (MultiScore) and PID2020-116813RB-I00a (SimancasSearch), funded by MCIN/AEI/10.13039/501100011033. The first author research was developed in part with the Valencian Graduate School and Research Network of Artificial Intelligence (valgrAI, co-funded by Generalitat Valenciana and the European Union). The second author is supported by a Maria Zambrano grant from the Spanish Ministerio de Universidades and the European Union NextGenerationEU/PRTR. The third author is supported by grant ACIF/2021/356 from the "Programa I+D+i de la Generalitat Valenciana". es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Pattern Recognition es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Handwritten text recognition es_ES
dc.subject Full-Page end-to-End text image es_ES
dc.subject Transcription es_ES
dc.subject Layout analysis es_ES
dc.subject Text line detection es_ES
dc.subject Reading order es_ES
dc.subject Evaluation measures es_ES
dc.subject Bag of words es_ES
dc.subject Regularised hungarian algorithm es_ES
dc.subject Word error rate es_ES
dc.title End-to-End page-Level assessment of handwritten text recognition es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.patcog.2023.109695 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116813RB-I00/ES/SEARCHING IN THE SIMANCA ARCHIVE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-118447RA-I00/ES/TRANSCRIPCION MULTIMODAL DE PARTITURAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CIUCSD//ACIF%2F2021%2F356/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Vidal, E.; Toselli, AH.; Ríos-Vila, A.; Calvo-Zaragoza, J. (2023). End-to-End page-Level assessment of handwritten text recognition. Pattern Recognition. 142. https://doi.org/10.1016/j.patcog.2023.109695 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.patcog.2023.109695 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 142 es_ES
dc.relation.pasarela S\497253 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Valencian Graduate School and Research Network of Artificial Intelligence es_ES
dc.contributor.funder Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem