Mostrar el registro sencillo del ítem
dc.contributor.author | Moliner Marin, Manuel | es_ES |
dc.contributor.author | Serra, J. M. | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.contributor.author | Argente, Estefanía | es_ES |
dc.contributor.author | Valero Cubas, Soledad | es_ES |
dc.contributor.author | Botti, V. | es_ES |
dc.date.accessioned | 2024-06-11T18:19:34Z | |
dc.date.available | 2024-06-11T18:19:34Z | |
dc.date.issued | 2005-02-04 | es_ES |
dc.identifier.issn | 1387-1811 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/205026 | |
dc.description.abstract | [EN] It is shown that multi-phase crystalline systems in zeolite synthesis can be modelled by using artificial neural networks (ANNs) and considering as input variables the molar compositions of the starting synthesis gel. Experimental data were obtained using high-throughput tools for synthesis of solid materials under hydrothermal conditions and following a multi-level factorial experimental design of the system TEA: SiO2:Na2O:Al2O3:H2O. The study of several neural networks resulted in a non-linear model able to predict the occurrence and crystallinity of zeolite beta and competing phases, being the predictions much better than those obtained by classical quadratic models. (C) 2004 Elsevier Inc. All rights reserved. | es_ES |
dc.description.sponsorship | Financial support from Spanish government (MAT2003-07945-C02-01 and grants TIC2003-07369- C02-01, CICYT DPI2002-04434-C04-02, FPU AP2001- 1516) is gratefully acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Microporous and Mesoporous Materials | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Neural networks | es_ES |
dc.subject | Zeolites | es_ES |
dc.subject | Beta | es_ES |
dc.subject | High-throughput synthesis | es_ES |
dc.subject | Data mining | es_ES |
dc.subject | Factorial design | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Application of artificial neural networks to high-throughput synthesis of zeolites | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.micromeso.2004.09.018 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CICYT//DPI2002-04434-C04-02/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//TIC2003-07369-C02-01/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MIU//FPU AP2001-1516/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICYT//MAT2003-07945-C02-01//Síntesis de nanomateriales estructurados basados en Oro y otros ácidos Lewis. Aplicaciones en catálisis/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Moliner Marin, M.; Serra, JM.; Corma Canós, A.; Argente, E.; Valero Cubas, S.; Botti, V. (2005). Application of artificial neural networks to high-throughput synthesis of zeolites. Microporous and Mesoporous Materials. 78(1):73-81. https://doi.org/10.1016/j.micromeso.2004.09.018 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.micromeso.2004.09.018 | es_ES |
dc.description.upvformatpinicio | 73 | es_ES |
dc.description.upvformatpfin | 81 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 78 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\515370 | es_ES |
dc.contributor.funder | Ministerio de Universidades | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Ministerio de Ciencia y Tecnología | es_ES |
dc.contributor.funder | Comisión Interministerial de Ciencia y Tecnología | es_ES |