- -

Application of artificial neural networks to high-throughput synthesis of zeolites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Application of artificial neural networks to high-throughput synthesis of zeolites

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Moliner Marin, Manuel es_ES
dc.contributor.author Serra, J. M. es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author Argente, Estefanía es_ES
dc.contributor.author Valero Cubas, Soledad es_ES
dc.contributor.author Botti, V. es_ES
dc.date.accessioned 2024-06-11T18:19:34Z
dc.date.available 2024-06-11T18:19:34Z
dc.date.issued 2005-02-04 es_ES
dc.identifier.issn 1387-1811 es_ES
dc.identifier.uri http://hdl.handle.net/10251/205026
dc.description.abstract [EN] It is shown that multi-phase crystalline systems in zeolite synthesis can be modelled by using artificial neural networks (ANNs) and considering as input variables the molar compositions of the starting synthesis gel. Experimental data were obtained using high-throughput tools for synthesis of solid materials under hydrothermal conditions and following a multi-level factorial experimental design of the system TEA: SiO2:Na2O:Al2O3:H2O. The study of several neural networks resulted in a non-linear model able to predict the occurrence and crystallinity of zeolite beta and competing phases, being the predictions much better than those obtained by classical quadratic models. (C) 2004 Elsevier Inc. All rights reserved. es_ES
dc.description.sponsorship Financial support from Spanish government (MAT2003-07945-C02-01 and grants TIC2003-07369- C02-01, CICYT DPI2002-04434-C04-02, FPU AP2001- 1516) is gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Microporous and Mesoporous Materials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Neural networks es_ES
dc.subject Zeolites es_ES
dc.subject Beta es_ES
dc.subject High-throughput synthesis es_ES
dc.subject Data mining es_ES
dc.subject Factorial design es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Application of artificial neural networks to high-throughput synthesis of zeolites es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.micromeso.2004.09.018 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CICYT//DPI2002-04434-C04-02/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//TIC2003-07369-C02-01/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MIU//FPU AP2001-1516/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICYT//MAT2003-07945-C02-01//Síntesis de nanomateriales estructurados basados en Oro y otros ácidos Lewis. Aplicaciones en catálisis/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Moliner Marin, M.; Serra, JM.; Corma Canós, A.; Argente, E.; Valero Cubas, S.; Botti, V. (2005). Application of artificial neural networks to high-throughput synthesis of zeolites. Microporous and Mesoporous Materials. 78(1):73-81. https://doi.org/10.1016/j.micromeso.2004.09.018 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.micromeso.2004.09.018 es_ES
dc.description.upvformatpinicio 73 es_ES
dc.description.upvformatpfin 81 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 78 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\515370 es_ES
dc.contributor.funder Ministerio de Universidades es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Ministerio de Ciencia y Tecnología es_ES
dc.contributor.funder Comisión Interministerial de Ciencia y Tecnología es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem