- -

Improving the quality of image generation in art with top-k training and cyclic generative methods

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improving the quality of image generation in art with top-k training and cyclic generative methods

Mostrar el registro completo del ítem

Vela, L.; Fuentes-Hurtado, F.; Colomer, A. (2023). Improving the quality of image generation in art with top-k training and cyclic generative methods. Scientific Reports. 13(1). https://doi.org/10.1038/s41598-023-44289-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/205106

Ficheros en el ítem

Metadatos del ítem

Título: Improving the quality of image generation in art with top-k training and cyclic generative methods
Autor: Vela, Laura Fuentes-Hurtado, Félix Colomer, Adrián
Fecha difusión:
Resumen:
[EN] The creation of artistic images through the use of Artificial Intelligence is an area that has been gaining interest in recent years. In particular, the ability of Neural Networks to separate and subsequently recombine ...[+]
Palabras clave: Generating artistic images , Quality of image , Top-k
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-023-44289-y
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41598-023-44289-y
Coste APC: 2674,1
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem