- -

Automatic semantic segmentation of the lumbar spine: Clinical applicability in a multi-parametric and multi-center study on magnetic resonance images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic semantic segmentation of the lumbar spine: Clinical applicability in a multi-parametric and multi-center study on magnetic resonance images

Mostrar el registro completo del ítem

Sáenz-Gamboa, JJ.; Doménech, J.; Alonso-Manjarrés, A.; Gomez, J.; De La Iglesia-Vayá, M. (2023). Automatic semantic segmentation of the lumbar spine: Clinical applicability in a multi-parametric and multi-center study on magnetic resonance images. Artificial Intelligence in Medicine. 140. https://doi.org/10.1016/j.artmed.2023.102559

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/205342

Ficheros en el ítem

Metadatos del ítem

Título: Automatic semantic segmentation of the lumbar spine: Clinical applicability in a multi-parametric and multi-center study on magnetic resonance images
Autor: Sáenz-Gamboa, Jhon Jairo Doménech, Julio Alonso-Manjarrés, Antonio Gomez, J.A. de la Iglesia-Vayá, María
Entidad UPV: Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Fecha difusión:
Resumen:
[EN] Significant difficulties in medical image segmentation include the high variability of images caused by their origin (multi-center), the acquisition protocols (multi-parametric), the variability of human anatomy, ...[+]
Palabras clave: Magnetic resonance images , Spine , Semantic image segmentation , Convolutional neural networks , Deep learning , Ensembles of classifiers
Derechos de uso: Reconocimiento (by)
Fuente:
Artificial Intelligence in Medicine. (issn: 0933-3657 )
DOI: 10.1016/j.artmed.2023.102559
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.artmed.2023.102559
Código del Proyecto:
info:eu-repo/grantAgreement/COMISION DE LAS COMUNIDADES EUROPEA//825111//DEEP-LEARNING AND HPC TO BOOST BIOMEDICAL APPLICATIONS FOR HEALTH/
info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F285/
Agradecimientos:
This work was partially supported by the Regional Ministry of Health of the Valencian Region, under the MIDAS project from BIMCV Generalitat Valenciana, under the grant agreement ACIF/2018/285, and by the DeepHealth project, ...[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem