Mostrar el registro completo del ítem
Sáenz-Gamboa, JJ.; Doménech, J.; Alonso-Manjarrés, A.; Gomez, J.; De La Iglesia-Vayá, M. (2023). Automatic semantic segmentation of the lumbar spine: Clinical applicability in a multi-parametric and multi-center study on magnetic resonance images. Artificial Intelligence in Medicine. 140. https://doi.org/10.1016/j.artmed.2023.102559
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/205342
Título: | Automatic semantic segmentation of the lumbar spine: Clinical applicability in a multi-parametric and multi-center study on magnetic resonance images | |
Autor: | Sáenz-Gamboa, Jhon Jairo Doménech, Julio Alonso-Manjarrés, Antonio de la Iglesia-Vayá, María | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Significant difficulties in medical image segmentation include the high variability of images caused by their origin (multi-center), the acquisition protocols (multi-parametric), the variability of human anatomy, ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1016/j.artmed.2023.102559 | |
Código del Proyecto: |
|
|
Agradecimientos: |
This work was partially supported by the Regional Ministry of Health of the Valencian Region, under the MIDAS project from BIMCV Generalitat Valenciana, under the grant agreement ACIF/2018/285, and by the DeepHealth project, ...[+]
|
|
Tipo: |
|