- -

Automatic semantic segmentation of the lumbar spine: Clinical applicability in a multi-parametric and multi-center study on magnetic resonance images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic semantic segmentation of the lumbar spine: Clinical applicability in a multi-parametric and multi-center study on magnetic resonance images

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sáenz-Gamboa, Jhon Jairo es_ES
dc.contributor.author Doménech, Julio es_ES
dc.contributor.author Alonso-Manjarrés, Antonio es_ES
dc.contributor.author Gomez, J.A. es_ES
dc.contributor.author de la Iglesia-Vayá, María es_ES
dc.date.accessioned 2024-06-20T18:17:20Z
dc.date.available 2024-06-20T18:17:20Z
dc.date.issued 2023-06 es_ES
dc.identifier.issn 0933-3657 es_ES
dc.identifier.uri http://hdl.handle.net/10251/205342
dc.description.abstract [EN] Significant difficulties in medical image segmentation include the high variability of images caused by their origin (multi-center), the acquisition protocols (multi-parametric), the variability of human anatomy, illness severity, the effect of age and gender, and notable other factors. This work addresses problems associated with the automatic semantic segmentation of lumbar spine magnetic resonance images using convolutional neural networks. We aimed to assign a class label to each pixel of an image, with classes defined by radiologists corresponding to structural elements such as vertebrae, intervertebral discs, nerves, blood vessels, and other tissues. The proposed network topologies represent variants of the U-Net architecture, and we used several complementary blocks to define the variants: three types of convolutional blocks, spatial attention models, deep supervision, and multilevel feature extractor. Here, we describe the topologies and analyze the results of the neural network designs that obtained the most accurate segmentation. Several proposed designs outperform the standard U-Net used as a baseline, primarily when used in ensembles, where the outputs of multiple neural networks are combined according to different strategies. es_ES
dc.description.sponsorship This work was partially supported by the Regional Ministry of Health of the Valencian Region, under the MIDAS project from BIMCV Generalitat Valenciana, under the grant agreement ACIF/2018/285, and by the DeepHealth project, Deep-Learning and HPC to Boost Biomedical Applications for Health , which has received funding from the European Union s Horizon 2020 research and innovation program under grant agreement No 825111. The authors thank the Bioinformatics and Biostatistics Unit from Principe Felipe Research Center (CIPF) for providing access to the cluster co-funded by European Regional Development Funds (FEDER) in the Valencian Community 2014 2020 and by the Biomedical Imaging Mixed Unit from Fundació per al Foment de la Investigació Sanitaria i Biomedica (FISABIO) for providing access to the cluster openmind, co-funded by European Regional Development Funds (FEDER) in Valencian Community 2014 2020. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Artificial Intelligence in Medicine es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Magnetic resonance images es_ES
dc.subject Spine es_ES
dc.subject Semantic image segmentation es_ES
dc.subject Convolutional neural networks es_ES
dc.subject Deep learning es_ES
dc.subject Ensembles of classifiers es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Automatic semantic segmentation of the lumbar spine: Clinical applicability in a multi-parametric and multi-center study on magnetic resonance images es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.artmed.2023.102559 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COMISION DE LAS COMUNIDADES EUROPEA//825111//DEEP-LEARNING AND HPC TO BOOST BIOMEDICAL APPLICATIONS FOR HEALTH/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F285/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Sáenz-Gamboa, JJ.; Doménech, J.; Alonso-Manjarrés, A.; Gomez, J.; De La Iglesia-Vayá, M. (2023). Automatic semantic segmentation of the lumbar spine: Clinical applicability in a multi-parametric and multi-center study on magnetic resonance images. Artificial Intelligence in Medicine. 140. https://doi.org/10.1016/j.artmed.2023.102559 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.artmed.2023.102559 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 140 es_ES
dc.relation.pasarela S\492253 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.contributor.funder Centro de Investigación Príncipe Felipe es_ES
dc.contributor.funder Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem