Mostrar el registro sencillo del ítem
dc.contributor.author | Sáenz-Gamboa, Jhon Jairo | es_ES |
dc.contributor.author | Doménech, Julio | es_ES |
dc.contributor.author | Alonso-Manjarrés, Antonio | es_ES |
dc.contributor.author | Gomez, J.A. | es_ES |
dc.contributor.author | de la Iglesia-Vayá, María | es_ES |
dc.date.accessioned | 2024-06-20T18:17:20Z | |
dc.date.available | 2024-06-20T18:17:20Z | |
dc.date.issued | 2023-06 | es_ES |
dc.identifier.issn | 0933-3657 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/205342 | |
dc.description.abstract | [EN] Significant difficulties in medical image segmentation include the high variability of images caused by their origin (multi-center), the acquisition protocols (multi-parametric), the variability of human anatomy, illness severity, the effect of age and gender, and notable other factors. This work addresses problems associated with the automatic semantic segmentation of lumbar spine magnetic resonance images using convolutional neural networks. We aimed to assign a class label to each pixel of an image, with classes defined by radiologists corresponding to structural elements such as vertebrae, intervertebral discs, nerves, blood vessels, and other tissues. The proposed network topologies represent variants of the U-Net architecture, and we used several complementary blocks to define the variants: three types of convolutional blocks, spatial attention models, deep supervision, and multilevel feature extractor. Here, we describe the topologies and analyze the results of the neural network designs that obtained the most accurate segmentation. Several proposed designs outperform the standard U-Net used as a baseline, primarily when used in ensembles, where the outputs of multiple neural networks are combined according to different strategies. | es_ES |
dc.description.sponsorship | This work was partially supported by the Regional Ministry of Health of the Valencian Region, under the MIDAS project from BIMCV Generalitat Valenciana, under the grant agreement ACIF/2018/285, and by the DeepHealth project, Deep-Learning and HPC to Boost Biomedical Applications for Health , which has received funding from the European Union s Horizon 2020 research and innovation program under grant agreement No 825111. The authors thank the Bioinformatics and Biostatistics Unit from Principe Felipe Research Center (CIPF) for providing access to the cluster co-funded by European Regional Development Funds (FEDER) in the Valencian Community 2014 2020 and by the Biomedical Imaging Mixed Unit from Fundació per al Foment de la Investigació Sanitaria i Biomedica (FISABIO) for providing access to the cluster openmind, co-funded by European Regional Development Funds (FEDER) in Valencian Community 2014 2020. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Artificial Intelligence in Medicine | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Magnetic resonance images | es_ES |
dc.subject | Spine | es_ES |
dc.subject | Semantic image segmentation | es_ES |
dc.subject | Convolutional neural networks | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Ensembles of classifiers | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Automatic semantic segmentation of the lumbar spine: Clinical applicability in a multi-parametric and multi-center study on magnetic resonance images | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.artmed.2023.102559 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/COMISION DE LAS COMUNIDADES EUROPEA//825111//DEEP-LEARNING AND HPC TO BOOST BIOMEDICAL APPLICATIONS FOR HEALTH/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F285/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Sáenz-Gamboa, JJ.; Doménech, J.; Alonso-Manjarrés, A.; Gomez, J.; De La Iglesia-Vayá, M. (2023). Automatic semantic segmentation of the lumbar spine: Clinical applicability in a multi-parametric and multi-center study on magnetic resonance images. Artificial Intelligence in Medicine. 140. https://doi.org/10.1016/j.artmed.2023.102559 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.artmed.2023.102559 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 140 | es_ES |
dc.relation.pasarela | S\492253 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | COMISION DE LAS COMUNIDADES EUROPEA | es_ES |
dc.contributor.funder | Centro de Investigación Príncipe Felipe | es_ES |
dc.contributor.funder | Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana | es_ES |