Resumen:
|
[EN] Hypertension, a primary risk factor for various cardiovascular diseases, is a global health concern. Early identification and effective management of hypertensive individuals are vital for reducing associated health ...[+]
[EN] Hypertension, a primary risk factor for various cardiovascular diseases, is a global health concern. Early identification and effective management of hypertensive individuals are vital for reducing associated health risks. This study explores the potential of deep learning (DL) techniques, specifically GoogLeNet, ResNet-18, and ResNet-50, for discriminating between normotensive (NTS) and hypertensive (HTS) individuals using photoplethysmographic (PPG) recordings. The research assesses the impact of calibration at different time intervals between measurements, considering intervals less than 1 h, 1-6 h, 6-24 h, and over 24 h. Results indicate that calibration is most effective when measurements are closely spaced, with an accuracy exceeding 90% in all the DL strategies tested. For calibration intervals below 1 h, ResNet-18 achieved the highest accuracy (93.32%), sensitivity (84.09%), specificity (97.30%), and F1-score (88.36%). As the time interval between calibration and test measurements increased, classification performance gradually declined. For intervals exceeding 6 h, accuracy dropped below 81% but with all models maintaining accuracy above 71% even for intervals above 24 h. This study provides valuable insights into the feasibility of using DL for hypertension risk assessment, particularly through PPG recordings. It demonstrates that closely spaced calibration measurements can lead to highly accurate classification, emphasizing the potential for real-time applications. These findings may pave the way for advanced, non-invasive, and continuous blood pressure monitoring methods that are both efficient and reliable.
[-]
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111100RB-C21/ES/ALGORITMOS AGILES, INTERNET DE LAS COSAS, Y ANALITICA DE DATOS PARA UN TRANSPORTE SOSTENIBLE EN CIUDADES INTELIGENTES/
...[+]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111100RB-C21/ES/ALGORITMOS AGILES, INTERNET DE LAS COSAS, Y ANALITICA DE DATOS PARA UN TRANSPORTE SOSTENIBLE EN CIUDADES INTELIGENTES/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123804OB-I00/ES/INTELIGENCIA ARTIFICIAL PARA LA MEDICINA MOVIL INNOVADORA EN ENFERMEDADES CARDIOVASCULARES/
info:eu-repo/grantAgreement/Consejería de Educación, Cultura y Deportes de la Junta de Comunidades de Castilla-La Mancha//SBPLY%2F17%2F180501%2F000411//Caracterización del sustrato auricular mediante análisis de señal como herramienta de asistencia procedimental en ablación por catéter de fibrilación auricular/
info:eu-repo/grantAgreement/GVA//AICO%2F2021%2F286//Inteligencia Artificial para Revolucionar la Medicina Móvil Usando Dispositivos Llevables/
info:eu-repo/grantAgreement/JCCM//SBPLY%2F21%2F180501%2F000186/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-128525OB-I00/ES/DETECCION PRECOZ DE ARRITMIAS CARDIACAS MEDIANTE INTELIGENCIA ARTIFICIAL PARA MEJORAR LA PREVENCION SECUNDARIA DEL ICTUS CRIPTOGENICO/
info:eu-repo/grantAgreement/MICINN//TED2021-130935B-I00/
info:eu-repo/grantAgreement/MICINN//PID2019-111100RB-C21/ES/Efficient & Sustainable Transport Systems in Smart Cities, Internet of Things, Transport Analytics, and Agile Algorithms/
[-]
|
Agradecimientos:
|
This research has received financial support from public grants PID2021-123804OB-I00, PID2021-00X128525-IV0 and TED2021-130935B-I00 of the Spanish Government, jointly with the European Regional Development Fund (EU), ...[+]
This research has received financial support from public grants PID2021-123804OB-I00, PID2021-00X128525-IV0 and TED2021-130935B-I00 of the Spanish Government, jointly with the European Regional Development Fund (EU), SBPLY/17/180501/000411 and SBPLY/21/180501/000186 from Junta de Comunidades de Castilla-La Mancha, and AICO/2021/286 from Generalitat Valenciana.
[-]
|