- -

Improved Hypertension Risk Assessment with Photoplethysmographic Recordings Combining Deep Learning and Calibration

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improved Hypertension Risk Assessment with Photoplethysmographic Recordings Combining Deep Learning and Calibration

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cano-Serrano, Jesús es_ES
dc.contributor.author Bertomeu-González, Vicente es_ES
dc.contributor.author Fácila, Lorenzo es_ES
dc.contributor.author Hornenro, Fernando es_ES
dc.contributor.author Alcaraz, Raúl es_ES
dc.contributor.author Rieta, J J es_ES
dc.date.accessioned 2024-07-01T18:36:49Z
dc.date.available 2024-07-01T18:36:49Z
dc.date.issued 2023-12-18 es_ES
dc.identifier.uri http://hdl.handle.net/10251/205631
dc.description.abstract [EN] Hypertension, a primary risk factor for various cardiovascular diseases, is a global health concern. Early identification and effective management of hypertensive individuals are vital for reducing associated health risks. This study explores the potential of deep learning (DL) techniques, specifically GoogLeNet, ResNet-18, and ResNet-50, for discriminating between normotensive (NTS) and hypertensive (HTS) individuals using photoplethysmographic (PPG) recordings. The research assesses the impact of calibration at different time intervals between measurements, considering intervals less than 1 h, 1-6 h, 6-24 h, and over 24 h. Results indicate that calibration is most effective when measurements are closely spaced, with an accuracy exceeding 90% in all the DL strategies tested. For calibration intervals below 1 h, ResNet-18 achieved the highest accuracy (93.32%), sensitivity (84.09%), specificity (97.30%), and F1-score (88.36%). As the time interval between calibration and test measurements increased, classification performance gradually declined. For intervals exceeding 6 h, accuracy dropped below 81% but with all models maintaining accuracy above 71% even for intervals above 24 h. This study provides valuable insights into the feasibility of using DL for hypertension risk assessment, particularly through PPG recordings. It demonstrates that closely spaced calibration measurements can lead to highly accurate classification, emphasizing the potential for real-time applications. These findings may pave the way for advanced, non-invasive, and continuous blood pressure monitoring methods that are both efficient and reliable. es_ES
dc.description.sponsorship This research has received financial support from public grants PID2021-123804OB-I00, PID2021-00X128525-IV0 and TED2021-130935B-I00 of the Spanish Government, jointly with the European Regional Development Fund (EU), SBPLY/17/180501/000411 and SBPLY/21/180501/000186 from Junta de Comunidades de Castilla-La Mancha, and AICO/2021/286 from Generalitat Valenciana. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Bioengineering es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Blood pressure es_ES
dc.subject Hypertension es_ES
dc.subject Photoplethysmography es_ES
dc.subject Calibration es_ES
dc.subject Deep learning es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Improved Hypertension Risk Assessment with Photoplethysmographic Recordings Combining Deep Learning and Calibration es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/bioengineering10121439 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111100RB-C21/ES/ALGORITMOS AGILES, INTERNET DE LAS COSAS, Y ANALITICA DE DATOS PARA UN TRANSPORTE SOSTENIBLE EN CIUDADES INTELIGENTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123804OB-I00/ES/INTELIGENCIA ARTIFICIAL PARA LA MEDICINA MOVIL INNOVADORA EN ENFERMEDADES CARDIOVASCULARES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Consejería de Educación, Cultura y Deportes de la Junta de Comunidades de Castilla-La Mancha//SBPLY%2F17%2F180501%2F000411//Caracterización del sustrato auricular mediante análisis de señal como herramienta de asistencia procedimental en ablación por catéter de fibrilación auricular/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2021%2F286//Inteligencia Artificial para Revolucionar la Medicina Móvil Usando Dispositivos Llevables/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//SBPLY%2F21%2F180501%2F000186/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-128525OB-I00/ES/DETECCION PRECOZ DE ARRITMIAS CARDIACAS MEDIANTE INTELIGENCIA ARTIFICIAL PARA MEJORAR LA PREVENCION SECUNDARIA DEL ICTUS CRIPTOGENICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TED2021-130935B-I00/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PID2019-111100RB-C21/ES/Efficient & Sustainable Transport Systems in Smart Cities, Internet of Things, Transport Analytics, and Agile Algorithms/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Cano-Serrano, J.; Bertomeu-González, V.; Fácila, L.; Hornenro, F.; Alcaraz, R.; Rieta, JJ. (2023). Improved Hypertension Risk Assessment with Photoplethysmographic Recordings Combining Deep Learning and Calibration. Bioengineering. 10(12):1-13. https://doi.org/10.3390/bioengineering10121439 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/bioengineering10121439 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 2306-5354 es_ES
dc.relation.pasarela S\513673 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Junta de Comunidades de Castilla-La Mancha es_ES
dc.contributor.funder Consejería de Educación, Cultura y Deportes de la Junta de Comunidades de Castilla-La Mancha es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem