- -

Assignment and Take-Off Approaches for Large-Scale Autonomous UAV Swarms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assignment and Take-Off Approaches for Large-Scale Autonomous UAV Swarms

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Wubben, Jamie es_ES
dc.contributor.author Hernandez, Daniel es_ES
dc.contributor.author Cecilia-Canales, José María es_ES
dc.contributor.author Imberón, Baldomero es_ES
dc.contributor.author Tavares De Araujo Cesariny Calafate, Carlos Miguel es_ES
dc.contributor.author Cano, Juan-Carlos es_ES
dc.contributor.author Manzoni, Pietro es_ES
dc.contributor.author Toh, Chai Keong es_ES
dc.date.accessioned 2024-07-02T18:08:53Z
dc.date.available 2024-07-02T18:08:53Z
dc.date.issued 2023-05 es_ES
dc.identifier.issn 1524-9050 es_ES
dc.identifier.uri http://hdl.handle.net/10251/205722
dc.description.abstract [EN] In the last decade, the popularity of UAVs has increased tremendously. Nowadays, many researchers are interested in UAV swarms. Coordinating a swarm of UAVs is a complicated task and many problems should be addressed before wide-spread adoption. In this work, we focus on the take-off for large-scale UAV swarms, with an extra focus on the assignment phase. The assignment phase is the first take-off stage whereby we decide which UAV on the ground goes to which place in the air. A good assignment algorithm, is quick, and at the same time reduce the total distance travelled as much as possible. We assess the performance of three different assignment algorithms: a heuristic, the original Kuhn-Munkres algorithm (KMA), and the KMA adapted for GPU use. Each algorithm was tested while varying the number of UAVs, as well as the type of flight formation. During the experiments, we measured the calculation time, total distance travelled, and number of flight paths crossing. In terms of total distance travelled, the KMA always outperforms the heuristic. However, the KMA takes longer (orders of magnitude) to calculate the assignment. Realistically, the KMA algorithm can only be used as long as the swarm does not contain more than 500 UAVs. From that point the GPU version of the KMA is faster. We can conclude that, in most cases, it is recommendable to use the KMA for the assignment as it will reduce the distance travelled to a minimum and, consequently, also reduce the number of flight paths crossing. es_ES
dc.description.sponsorship This work was supported in part by the Research and Development Project under Grant PID2021-122580NB-I00 and Grant RTC2019-007159-5; in part by the MCIN/AEI/10.13039/501100011033, Ramon y Cajal, under Grant RYC2018-025580-I; and in part by ERDF A way of making Europe. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Transactions on Intelligent Transportation Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Drones es_ES
dc.subject Autonomous aerial vehicles es_ES
dc.subject Graphics processing units es_ES
dc.subject Task analysis es_ES
dc.subject Heuristic algorithms es_ES
dc.subject Metaheuristics es_ES
dc.subject Costs es_ES
dc.subject UAV networks es_ES
dc.subject Swarm takeoff es_ES
dc.subject Swarm formations es_ES
dc.subject Kuhn-Munkres es_ES
dc.subject GPU acceleration es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Assignment and Take-Off Approaches for Large-Scale Autonomous UAV Swarms es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TITS.2023.3242765 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-122580NB-I00/ES/SISTEMAS INTELIGENTES DE SENSORIZACION PARA ECOSISTEMAS, ESPACIOS URBANOS Y MOVILIDAD SOSTENIBLE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RTC-2019-007159-5//DESARROLLO DE INFRAESTRUCTURAS IOT DE ALTAS PRESTACIONES CONTRA EL CAMBIO CLIMÁTICO BASADAS EN INTELIGENCIA ARTIFICIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RYC-2018-025580-I/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Wubben, J.; Hernandez, D.; Cecilia-Canales, JM.; Imberón, B.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Manzoni, P.... (2023). Assignment and Take-Off Approaches for Large-Scale Autonomous UAV Swarms. IEEE Transactions on Intelligent Transportation Systems. 24(5):4836-4847. https://doi.org/10.1109/TITS.2023.3242765 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/TITS.2023.3242765 es_ES
dc.description.upvformatpinicio 4836 es_ES
dc.description.upvformatpfin 4847 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\492302 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem