- -

Development of prediction model of ozone dosage and residual ozone concentration using machine learning methods in ozone process of drinking water treatment process

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of prediction model of ozone dosage and residual ozone concentration using machine learning methods in ozone process of drinking water treatment process

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kwon, Jaeyoung es_ES
dc.contributor.author Hyung, Jinseok es_ES
dc.contributor.author Kim, Taehyeon es_ES
dc.contributor.author Park, Haekuem es_ES
dc.contributor.author Koo, Jayong es_ES
dc.date.accessioned 2024-07-10T11:38:56Z
dc.date.available 2024-07-10T11:38:56Z
dc.date.issued 2024-03-06
dc.identifier.isbn 9788490489826
dc.identifier.uri http://hdl.handle.net/10251/205920
dc.description.abstract [EN] The ozone process, which is the latter process of the water purification process, injects ozone to remove taste odor substances from tap water. Still, it is difficult to work the ozone process due to recent changes in water quality, such as taste and odor substances due to climate change. Therefore, this study developed an ozone injection rate determination model and a residual ozone concentration prediction model to properly remove flavor odor substances from raw water and proposed an operational diagnosis and optimal decision-making method for the ozone process in water purification. An ozone injection rate determination model and a residual ozone concentration prediction model were developed using data on water quality, flow rate, and operating conditions measured at Seoul's Y water purification plant. Two models were developed: the random forest and the MLP models. The performance difference between the two was verified by comparing the correlation coefficient and error index. Bayesian optimization, a global search method within a given composition space, was used to determine hyperparameters for each model. RMSE was selected as an objective function to determine the optimal hyperparameter through cross-validation. If the above model is applied to the ozone process, it is expected that an immediate response to changes in raw water quality and human error prevention will be possible. es_ES
dc.format.extent 7 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 2nd International Join Conference on Water Distribution System Analysis (WDSA) & Computing and Control in the Water Industry (CCWI)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Machine Learning es_ES
dc.subject Random Forest es_ES
dc.subject MLP es_ES
dc.subject Bayesian Optimization es_ES
dc.subject Ozone Injection Rate es_ES
dc.subject Residual Ozone Concentration es_ES
dc.title Development of prediction model of ozone dosage and residual ozone concentration using machine learning methods in ozone process of drinking water treatment process es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/WDSA-CCWI2022.2022.14777
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Kwon, J.; Hyung, J.; Kim, T.; Park, H.; Koo, J. (2024). Development of prediction model of ozone dosage and residual ozone concentration using machine learning methods in ozone process of drinking water treatment process. Editorial Universitat Politècnica de València. https://doi.org/10.4995/WDSA-CCWI2022.2022.14777 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename 2nd WDSA/CCWI Joint Conference es_ES
dc.relation.conferencedate Julio 18-22, 2022 es_ES
dc.relation.conferenceplace Valencia, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/WDSA-CCWI/WDSA-CCWI2022/paper/view/14777 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\14777 es_ES
dc.contributor.funder Korea Environment Industry & Technology Institute(KEITI) and Korea Ministry of Environment(MOE) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem