- -

Dynamic edge betweenness centrality and optimal design of water distribution networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dynamic edge betweenness centrality and optimal design of water distribution networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hajibabaei, Mohsen es_ES
dc.contributor.author Hesarkazzazi, Sina es_ES
dc.contributor.author Minaei, Amin es_ES
dc.contributor.author Savić, Dragan es_ES
dc.contributor.author Sitzenfrei, Robert es_ES
dc.date.accessioned 2024-07-10T12:30:53Z
dc.date.available 2024-07-10T12:30:53Z
dc.date.issued 2024-03-06
dc.identifier.isbn 9788490489826
dc.identifier.uri http://hdl.handle.net/10251/205932
dc.description.abstract [EN] The multi-objective design of water distribution networks (WDNs) as a nonlinear optimization problem is a challenging task. With two contradicting objectives (e.g., minimizing costs and maximizing resilience), Pareto fronts of optimal solutions can be obtained with, e.g., evolutionary algorithms. However, the main drawback of these algorithms is the high computational effort required to optimize large WDNs. Recently, a highly efficient method based on complex network theory (CNT) was developed, where within seconds, a wide range of Pareto near-optimal solutions can be obtained for the design of WDNs (i.e., determining optimal diameters). The developed method is based on a customized graph measure called demand edge betweenness centrality (EBCQ). This measure is based on the frequency of occurrence of an edge in the shortest path from a source node to a demand node. In addition, EBCQ sums up the demands routed through that edge, giving a valid flow estimation for an optimal design. In the graph of a WDN, the edges can have different weights. The weighting function used for  calculations can be ‘static’ or ‘dynamic’. A constant value is utilized for edge weights in the static weighting approach, while a dynamic weighting function implies that edge weights are modified when iterating through all demand nodes. In this context, using dynamic weighting functions for  (i.e., dynamic ) avoids concentrating  values in just a few edges (shortest-path trees) by considering redundancy in flow paths and better approximation of the hydraulic behavior. However, it is not clear how the parameters of dynamic weighting functions should be defined to achieve the best approximation of the Pareto-optimal front. This work performs a systematic investigation of dynamic weighting functions and gives guidance for optimal parameter selection. The comparative study between the CNT approach (with static and dynamic weights) and evolutionary optimizations on four WDN design problems confirms the capability of the proposed dynamic functions in providing optimal/near-optimal solutions. es_ES
dc.format.extent 11 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 2nd International Join Conference on Water Distribution System Analysis (WDSA) & Computing and Control in the Water Industry (CCWI)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Graph theory es_ES
dc.subject Multi-objective evolutionary algorithms es_ES
dc.subject Pareto fronts es_ES
dc.subject Complex network analysis es_ES
dc.title Dynamic edge betweenness centrality and optimal design of water distribution networks es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/WDSA-CCWI2022.2022.14627
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Hajibabaei, M.; Hesarkazzazi, S.; Minaei, A.; Savić, D.; Sitzenfrei, R. (2024). Dynamic edge betweenness centrality and optimal design of water distribution networks. Editorial Universitat Politècnica de València. https://doi.org/10.4995/WDSA-CCWI2022.2022.14627 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename 2nd WDSA/CCWI Joint Conference es_ES
dc.relation.conferencedate Julio 18-22, 2022 es_ES
dc.relation.conferenceplace Valencia, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/WDSA-CCWI/WDSA-CCWI2022/paper/view/14627 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\14627 es_ES
dc.contributor.funder This study was funded by the Austrian Science Fund (FWF): P 31104-N29 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem