- -

Advancing towards semi-automatic labeling of GPR images to improve visualizations of pipes and leaks in water distribution networks using multi-agent systems and machine learning techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Advancing towards semi-automatic labeling of GPR images to improve visualizations of pipes and leaks in water distribution networks using multi-agent systems and machine learning techniques

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Stanton, Gemma es_ES
dc.contributor.author Ayala-Cabrera, David es_ES
dc.date.accessioned 2024-07-10T12:31:51Z
dc.date.available 2024-07-10T12:31:51Z
dc.date.issued 2024-03-06
dc.identifier.isbn 9788490489826
dc.identifier.uri http://hdl.handle.net/10251/205933
dc.description.abstract [EN] Critical infrastructures such as water distribution networks (WDNs) require reliable and affordable information at a reasonable cost to address challenges that can negatively affect their operation. Inadequate knowledge about WDN assets and their state of health presents challenges for essential activities such as network modeling, operation, assessment, and maintenance. This work seeks to increase the availability of WDN asset data through improved interpretability of GPR images. The semi-automatic labeling approach presented here expands upon existing multi-agent image-cleaning methods and feature characterization techniques. The division of a pre-processed image, in the form of a matrix, into a grid of smaller blocks allowed the identification of relevant features using density of nonzero values in the blocks; this approach, conducted manually in this proof of concept, can provide a basis for training an intelligent system (e.g., a convolutional neural network) to extract the families of interest and eliminate noise. Thus, this research expands this methodology to advance towards automatic detection of pipes and leaks and easily visualize the data. In this paper, 3D visualizations of WDN assets have been created to demonstrate the usefulness of this semi-automatic process in delivering easily-interpretable GPR data for managers and operators of WDNs. es_ES
dc.format.extent 12 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 2nd International Join Conference on Water Distribution System Analysis (WDSA) & Computing and Control in the Water Industry (CCWI)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Water distribution networks es_ES
dc.subject GPR image interpretation es_ES
dc.subject 3D pipe models es_ES
dc.subject Non-destructive testing methods es_ES
dc.subject Water leakage es_ES
dc.subject Intelligent data analysis es_ES
dc.subject Multi-agent systems es_ES
dc.subject Semi-automatic labeling of GPR images es_ES
dc.title Advancing towards semi-automatic labeling of GPR images to improve visualizations of pipes and leaks in water distribution networks using multi-agent systems and machine learning techniques es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/WDSA-CCWI2022.2022.14127
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Stanton, G.; Ayala-Cabrera, D. (2024). Advancing towards semi-automatic labeling of GPR images to improve visualizations of pipes and leaks in water distribution networks using multi-agent systems and machine learning techniques. Editorial Universitat Politècnica de València. https://doi.org/10.4995/WDSA-CCWI2022.2022.14127 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename 2nd WDSA/CCWI Joint Conference es_ES
dc.relation.conferencedate Julio 18-22, 2022 es_ES
dc.relation.conferenceplace Valencia, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/WDSA-CCWI/WDSA-CCWI2022/paper/view/14127 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\14127 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem