- -

A Bayesian Generative Adversarial Networks (GAN) to Generate Synthetic Time-Series Data, Application In Combined Sewer Flow Prediction

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Bayesian Generative Adversarial Networks (GAN) to Generate Synthetic Time-Series Data, Application In Combined Sewer Flow Prediction

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bakhshipour, Amin es_ES
dc.contributor.author Koochali, Alireza es_ES
dc.contributor.author Dittmer, Ulrich es_ES
dc.contributor.author Haghighi, Ali es_ES
dc.contributor.author Ahmed, Sheraz es_ES
dc.contributor.author Dengel, Andreas es_ES
dc.date.accessioned 2024-07-10T12:36:38Z
dc.date.available 2024-07-10T12:36:38Z
dc.date.issued 2024-03-06
dc.identifier.isbn 9788490489826
dc.identifier.uri http://hdl.handle.net/10251/205935
dc.description.abstract [EN] Despite various breakthroughs of machine learning and data analysis techniques for improving smart operation and management of urban water infrastructures, some key limitations obstruct this progress. Among these shortcomings, the absence of freely available data due to data privacy or high costs of data gathering and the nonexistence of adequate rare or extreme events in the available data plays a crucial role. Here, the Generative Adversarial Networks (GANs) can help overcome these challenges. In machine learning, generative models are a class of methods capable of learning data distribution to generate artificial data. In this study, we developed a GAN model to generate synthetic time series to balance our limited recorded time series data and improve the accuracy of a data-driven model for combined sewer flow prediction. We considered the sewer system of a small town in Germany as the test case. Precipitation and inflow to the storage tanks are used for the Data-Driven model development. The aim is to predict the flow using precipitation data and examine the impact of data augmentation using synthetic data in model performance. Results show that GAN can successfully generate synthetic time series from real data distribution, which helps more accurate peak flow prediction. However, the model without data augmentation works better for dry weather prediction. Therefore, an ensemble model is suggested to combine the advantages of both models. es_ES
dc.format.extent 10 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 2nd International Join Conference on Water Distribution System Analysis (WDSA) & Computing and Control in the Water Industry (CCWI)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Machine Learning es_ES
dc.subject Urban Water Infrastructures es_ES
dc.subject Generative Adversarial Networks es_ES
dc.subject Time Series Prediction es_ES
dc.subject Synthetic time series generation es_ES
dc.subject Combined Sewer Flow Prediction es_ES
dc.title A Bayesian Generative Adversarial Networks (GAN) to Generate Synthetic Time-Series Data, Application In Combined Sewer Flow Prediction es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/WDSA-CCWI2022.2022.14699
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Bakhshipour, A.; Koochali, A.; Dittmer, U.; Haghighi, A.; Ahmed, S.; Dengel, A. (2024). A Bayesian Generative Adversarial Networks (GAN) to Generate Synthetic Time-Series Data, Application In Combined Sewer Flow Prediction. Editorial Universitat Politècnica de València. https://doi.org/10.4995/WDSA-CCWI2022.2022.14699 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename 2nd WDSA/CCWI Joint Conference es_ES
dc.relation.conferencedate Julio 18-22, 2022 es_ES
dc.relation.conferenceplace Valencia, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/WDSA-CCWI/WDSA-CCWI2022/paper/view/14699 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\14699 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem