- -

NRW Estimation and Localization in Water Distribution Networks via Hydraulic Model Calibration using 24/7 Monitoring Data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

NRW Estimation and Localization in Water Distribution Networks via Hydraulic Model Calibration using 24/7 Monitoring Data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Chew, Alvin es_ES
dc.contributor.author Wu, Zheng es_ES
dc.contributor.author Kalfarisi, Rony es_ES
dc.contributor.author Xue, Meng es_ES
dc.contributor.author Pok, Jocelyn es_ES
dc.contributor.author Jianping, Cai es_ES
dc.contributor.author Lai, Kah es_ES
dc.contributor.author Hew, Sock es_ES
dc.contributor.author Wong, Jia es_ES
dc.date.accessioned 2024-07-12T09:22:34Z
dc.date.available 2024-07-12T09:22:34Z
dc.date.issued 2024-03-06
dc.identifier.isbn 9788490489826
dc.identifier.uri http://hdl.handle.net/10251/206039
dc.description.abstract [EN] Operations of water distribution networks (WDNs) are monitored daily via installed data loggers, where the collated hydraulic data can be leveraged to improve the system’s operations over time, and to minimize total economic losses due to non-revenue water (NRW). In collaboration with Public Utility Board (PUB), Singapore’s National Water Agency, a practically novel model calibration approach using 24/7 monitoring flow and pressure data has been developed to facilitate PUB’s Smart Water Grid (SWG). The approach is developed as a generic integrated solution process to conduct a series of systematic analyses for daily WDN model calibration, namely: (1) estimating the system’s daily NRW contributions; (2) performing flow calibration that involves net demand consumption calibration, adjusting pumps operational configurations and localizing NRW sources when the system’s daily estimated NRW volume exceeds its assumed background volume; (3) performing energy calibration by rectifying possible drifting in monitored pressure head data and calibrating other physical properties which include, but not limited to, pipe roughness and valve settings, especially during peak-demand hours. The effectiveness of our proposed approach is subsequently tested on three WDN zones in Singapore, having a total pipe length of >100km, that comprises of atypical water usage patterns. The results of model calibration for one of three zones is presented in this paper. The key outcomes derived from the study are: (a) localized a reported leakage event by PUB to less than 100m; (b) calibrated the system’s flow balance, to less than 1% average mean absolute percentage error (MAPE), by first identifying and addressing the system’s billing data uncertainties, followed by localizing anomaly events that account for the total NRW volume estimated; and (c) calibrated the system’s pipe roughness values to improve the total energy balance by achieving an average daily MAPE of 4.0%. es_ES
dc.format.extent 14 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 2nd International Join Conference on Water Distribution System Analysis (WDSA) & Computing and Control in the Water Industry (CCWI)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Water distribution networks es_ES
dc.subject Water losses estimation es_ES
dc.subject Anomaly localization es_ES
dc.subject Demand calibration es_ES
dc.subject Hydraulic model calibration es_ES
dc.subject Non-revenue water es_ES
dc.title NRW Estimation and Localization in Water Distribution Networks via Hydraulic Model Calibration using 24/7 Monitoring Data es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/WDSA-CCWI2022.2022.14107
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Chew, A.; Wu, Z.; Kalfarisi, R.; Xue, M.; Pok, J.; Jianping, C.; Lai, K.... (2024). NRW Estimation and Localization in Water Distribution Networks via Hydraulic Model Calibration using 24/7 Monitoring Data. Editorial Universitat Politècnica de València. https://doi.org/10.4995/WDSA-CCWI2022.2022.14107 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename 2nd WDSA/CCWI Joint Conference es_ES
dc.relation.conferencedate Julio 18-22, 2022 es_ES
dc.relation.conferenceplace Valencia, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/WDSA-CCWI/WDSA-CCWI2022/paper/view/14107 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\14107 es_ES
dc.contributor.funder PUB, Singapore's National Water Agency; Singapore's National Research Foundation es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem