- -

Multi-objective insights and analysis on data driven classifiers for anomaly detection in water distribution systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multi-objective insights and analysis on data driven classifiers for anomaly detection in water distribution systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carreño-Alvarado, Elizabeth Pauline es_ES
dc.contributor.author Hernández-Alba, Mayra es_ES
dc.contributor.author Reynoso Meza, Gilberto es_ES
dc.date.accessioned 2024-07-15T09:49:31Z
dc.date.available 2024-07-15T09:49:31Z
dc.date.issued 2024-03-06
dc.identifier.isbn 9788490489826
dc.identifier.uri http://hdl.handle.net/10251/206110
dc.description.abstract [EN] Machine learning techniques have shown to be a powerful tool for extracting and/or inferring complex patterns from data. In the case of the so-called supervised learning, a given learner representation could learn such patterns using labeled data. For example, a helpful approach is to adjust a learner to detect anomalies: historical data can be used, where those events are identified, to find a pattern to classify new data as an anomaly (true event) or not (false event). In this example, the learner's objective is to act as a binary classifier, where a balance between false negatives (predict a typical operation, when in fact an anomaly exists) and false positives (predict an anomaly, when there is not). This balance is attained via an optimization (learning phase), where the learner representation is adjusted. Multi-objective optimization techniques have a natural way of dealing with such problems. They perform a simultaneous optimization of conflicting objectives. As a result, a set of Pareto-optimal solutions, the Pareto front, is calculated. This idea could be used in the training process of binary classifiers. Nevertheless, this requires an integral methodology, merging multi-objective optimization and multi-criteria decision making. While it is true that this idea is not new, methodologies and guidelines are still missing to conduct this process. In this work, we move toward the definition of an integrated methodology of multi-objective learning for binary classifiers for anomaly detection. An anomaly detection database for water distribution systems is used for such a purpose. Preliminary results show to be competitive regarding the F1-score to similar approaches. es_ES
dc.format.extent 11 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 2nd International Join Conference on Water Distribution System Analysis (WDSA) & Computing and Control in the Water Industry (CCWI)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Machine learning es_ES
dc.subject Logistic regression es_ES
dc.subject Multi-objective optimisation es_ES
dc.subject Water distribution systems es_ES
dc.title Multi-objective insights and analysis on data driven classifiers for anomaly detection in water distribution systems es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/WDSA-CCWI2022.2022.14761
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Carreño-Alvarado, EP.; Hernández-Alba, M.; Reynoso Meza, G. (2024). Multi-objective insights and analysis on data driven classifiers for anomaly detection in water distribution systems. Editorial Universitat Politècnica de València. https://doi.org/10.4995/WDSA-CCWI2022.2022.14761 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename 2nd WDSA/CCWI Joint Conference es_ES
dc.relation.conferencedate Julio 18-22, 2022 es_ES
dc.relation.conferenceplace Valencia, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/WDSA-CCWI/WDSA-CCWI2022/paper/view/14761 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\14761 es_ES
dc.contributor.funder CNPq; Fundação Araucária es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem