- -

Japanese readability assessment using machine learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Japanese readability assessment using machine learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ivie, Tyler es_ES
dc.contributor.author Reynolds, Robert es_ES
dc.date.accessioned 2024-07-22T11:36:22Z
dc.date.available 2024-07-22T11:36:22Z
dc.date.issued 2024-02-12
dc.identifier.isbn 9788413961316
dc.identifier.uri http://hdl.handle.net/10251/206507
dc.description.abstract [EN] We present a new corpus of Japanese texts, labeled according to six second-language readability levels. We also show the results of experiments training machine-learning classifiers to automatically label new texts according to reading level. The resulting models can be used in language-learning websites and applications to enhance Japanese language learning. The best-performing model, Random Forest, achieved an F1 score of 0.86, with an adjacent accuracy of 0.97. Of the 114 features used, we identify a small subset of five features that are sufficient to achieve an F1 score of 0.74. The corpus, code, and resulting models are free and open-source.¹ ¹ https://github.com/reynoldsnlp/japanese_readability_corpus es_ES
dc.format.extent 6 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof EuroCALL 2023. CALL for all Languages - Short Papers
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Readability es_ES
dc.subject Machine learning es_ES
dc.subject Japanese es_ES
dc.title Japanese readability assessment using machine learning es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/EuroCALL2023.2023.16989
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Ivie, T.; Reynolds, R. (2024). Japanese readability assessment using machine learning. Editorial Universitat Politècnica de València. https://doi.org/10.4995/EuroCALL2023.2023.16989 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename EuroCALL 2023: CALL for all Languages es_ES
dc.relation.conferencedate Agosto 15-18, 2023 es_ES
dc.relation.conferenceplace Reykjavik, Islandia es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/EuroCALL/EuroCALL2023/paper/view/16989 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\16989 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem