- -

Evaluating the effectiveness of Microsoft Transcribe for automating the assessment of pronunciation in language proficiency tests

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluating the effectiveness of Microsoft Transcribe for automating the assessment of pronunciation in language proficiency tests

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Nelson, Carey es_ES
dc.contributor.author Cardoso, Walcir es_ES
dc.date.accessioned 2024-07-25T10:46:44Z
dc.date.available 2024-07-25T10:46:44Z
dc.date.issued 2024-02-12
dc.identifier.isbn 9788413961316
dc.identifier.uri http://hdl.handle.net/10251/206633
dc.description.abstract [EN] Improvements in Automatic Speech Recognition (ASR) have created opportunities for using it as a tool to facilitate second and foreign language (L2) assessment. These technical improvements have not only enabled automation of language proficiency test scoring but also reduced evaluator bias and errors, decreased processing time, and lowered costs for testing organizations. The purpose of this study was to evaluate English as a Second Language (ESL) pronunciation using the ASR feature in the Microsoft 365 product suite, Transcribe (MS-T). The study involved adult ESL learners at a Canadian university that partook in a language proficiency test. We examined the audio recordings of 56 candidates during the pronunciation portion of the test. Building on previous studies that found a strong correlation between scores from Google Voice Typing and human raters, the current study conducted a similar analysis comparing scores derived from MS-T to both human ratings and Google Voice Typing. Our findings indicate that the ASR capabilities of MS-T, similar to Google Voice Typing, can assume an important role in L2 speaking assessment by providing objectivity and reliability to the testing process, expediting scoring, and reducing costs. es_ES
dc.format.extent 6 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof EuroCALL 2023. CALL for all Languages - Short Papers
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Automated evaluation es_ES
dc.subject Automatic Speech Recognition (ASR) es_ES
dc.subject Language assessment es_ES
dc.subject ESL pronunciation evaluation es_ES
dc.subject Microsoft Transcribe (MS-T) es_ES
dc.subject Placement tests es_ES
dc.title Evaluating the effectiveness of Microsoft Transcribe for automating the assessment of pronunciation in language proficiency tests es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/EuroCALL2023.2023.17007
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Nelson, C.; Cardoso, W. (2024). Evaluating the effectiveness of Microsoft Transcribe for automating the assessment of pronunciation in language proficiency tests. Editorial Universitat Politècnica de València. https://doi.org/10.4995/EuroCALL2023.2023.17007 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename EuroCALL 2023: CALL for all Languages es_ES
dc.relation.conferencedate Agosto 15-18, 2023 es_ES
dc.relation.conferenceplace Reykjavik, Islandia es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/EuroCALL/EuroCALL2023/paper/view/17007 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\17007 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem