Mostrar el registro sencillo del ítem
dc.contributor.author | Verdú-Amat, Samuel | es_ES |
dc.contributor.author | Fuentes López, Cristina | es_ES |
dc.contributor.author | Fuentes López, Ana | es_ES |
dc.contributor.author | Pérez, Alberto J. | es_ES |
dc.contributor.author | Barat Baviera, José Manuel | es_ES |
dc.contributor.author | Grau Meló, Raúl | es_ES |
dc.date.accessioned | 2024-07-29T18:04:28Z | |
dc.date.available | 2024-07-29T18:04:28Z | |
dc.date.issued | 2024-06 | es_ES |
dc.identifier.issn | 0260-8774 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/206785 | |
dc.description.abstract | [EN] Chemical changes in cod-liver oil produced by oxidation and adulterations with other oils were modelled using RGB-laser scattering imaging. Two types of composition-altered cod-liver oil were: oxidised oil at three different temperatures (4, 20, and 40(degrees) C) and cod-liver oil adultered with wheat-germ, soybeana, sesame and corn. Both types of altered oils and control samples were analysed by the imaging technique and chemical measurements were also carried out to know the oxidation status. The capacity of the technique for detecting pure cod-liver oil was tested by applying multivariate regression and discriminant procedures based on PLS using the information captured from each type of laser (650 nm, 550 nm and 450 nm). The results showed the capacity of the technique to capture the variability provided by the cod-liver oil against the other vegetable oils used as adulterants. It was discriminate from all vegetable oils and all them were detected when were added as adulterants. Changes in the oxidation status were also modelled by predicting the oxidation parameters with R-2 > 0.90, independently of the temperature of storage. Those capacities made it possible to discriminate pure cod-liver from all tested adulterated-oxidised samples performing a common model. The prediction capacity was synergic when models were performed including the three lasers, as opposed to the results obtained with singly-laser models. | es_ES |
dc.description.sponsorship | The authors are grateful to the grant BIOZOOSTAIN (PCI2020- 112051) funded by MCIN/AEI/10.13039/501100011033 and by the "European Union Next GenerationEU/PRTR ". | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Food Engineering | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Laser scattering imaging | es_ES |
dc.subject | Cod-liver oil | es_ES |
dc.subject | Oxidation | es_ES |
dc.subject | Adulteration | es_ES |
dc.subject | Non-destructive inspection | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Control of cod-liver oil composition with laser scattering imaging combined with machine learning procedures: The cases of adulteration and oxidation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jfoodeng.2024.111955 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PCI2020-112051/ | es_ES |
dc.rights.accessRights | Embargado | es_ES |
dc.date.embargoEndDate | 2025-01-31 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Verdú-Amat, S.; Fuentes López, C.; Fuentes López, A.; Pérez, AJ.; Barat Baviera, JM.; Grau Meló, R. (2024). Control of cod-liver oil composition with laser scattering imaging combined with machine learning procedures: The cases of adulteration and oxidation. Journal of Food Engineering. 370. https://doi.org/10.1016/j.jfoodeng.2024.111955 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jfoodeng.2024.111955 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 370 | es_ES |
dc.relation.pasarela | S\523071 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |