- -

Mean-Dispersion Principles and the Wigner Transform

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mean-Dispersion Principles and the Wigner Transform

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Boiti, Chiara es_ES
dc.contributor.author Jornet Casanova, David es_ES
dc.contributor.author Oliaro, Alessandro es_ES
dc.date.accessioned 2024-09-05T18:22:28Z
dc.date.available 2024-09-05T18:22:28Z
dc.date.issued 2024-04-06 es_ES
dc.identifier.issn 1050-6926 es_ES
dc.identifier.uri http://hdl.handle.net/10251/207432
dc.description.abstract [EN] Given a function f E L2, we consider means and variances associated to f and its Fourier transform , and explore their relations with the Wigner transform W(f), obtaining, as particular cases, a simple new proof of Shapiro¿s mean-dispersion principle, as well as a stronger result due to Jaming and Powell. Uncertainty principles for orthonormal sequences in involving linear partial differential operators with polynomial coefficients and the Wigner distribution, or different Cohen class representations, are obtained, and an extension to the case of Riesz bases is studied. es_ES
dc.description.sponsorship Boiti and Oliaro were partially supported by the INdAM-GNAMPA Project 2020 "Analisi microlocale e applicazioni: PDEs stocastiche e di evoluzione, analisi tempo-frequenza, varieta", and by the Project FAR 2019 (University of Ferrara). Boiti was also supported by the Projects FAR2020, FAR 2021, FIRD 2022 (University of Ferrara) and Oliaro was also supported by the Projects "Ricercalocale 2020 - linea A" and "Ricerca locale 2021 - linea A" (University of Torino). Jornet was partially supported by the projects PID2020-119457GB-100 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe", and by the project GV AICO/2021/170 es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Geometric Analysis es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Mean-dispersion principle es_ES
dc.subject Wigner transform es_ES
dc.subject Uncertainty principle es_ES
dc.subject Orthonormal systems es_ES
dc.subject Hermite functions es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Mean-Dispersion Principles and the Wigner Transform es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s12220-024-01601-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-119457GB-I00/ES/METODOS DEL ANALISIS FUNCIONAL PARA LA TEORIA DE OPERADORES Y EL ANALISIS TIEMPO-FRECUENCIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNITO//Ricercalocale 2020/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNITO//Ricercalocale 2021/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2021%2F170/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNIFE//FAR2020/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNIFE//FIRD2022/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Arquitectura - Escola Tècnica Superior d'Arquitectura es_ES
dc.description.bibliographicCitation Boiti, C.; Jornet Casanova, D.; Oliaro, A. (2024). Mean-Dispersion Principles and the Wigner Transform. Journal of Geometric Analysis. 34(6). https://doi.org/10.1007/s12220-024-01601-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s12220-024-01601-0 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 34 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\523302 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Università degli Studi di Torino es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Università degli Studi di Ferrara es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem