Mostrar el registro completo del ítem
Rohrhofer, FM.; Posch, S.; Goessnitzer, C.; García-Oliver, JM.; Geiger, BC. (2024). Utilizing neural networks to supplant chemical kinetics tabulation through mass conservation and weighting of species depletion. Energy and AI. 16. https://doi.org/10.1016/j.egyai.2024.100341
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/207452
Título: | Utilizing neural networks to supplant chemical kinetics tabulation through mass conservation and weighting of species depletion | |
Autor: | Rohrhofer, Franz M. Posch, Stefan Goessnitzer, Clemens Geiger, Bernard C. | |
Fecha difusión: |
|
|
Resumen: |
[EN] Artificial Neural Networks (ANNs) have emerged as a powerful tool in combustion simulations to replace memory -intensive tabulation of integrated chemical kinetics. Complex reaction mechanisms, however, present a ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1016/j.egyai.2024.100341 | |
Agradecimientos: |
This work was supported by the Austrian COMET - Competence Centers for Excellent Technologies - Programme of the Austrian Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology, the ...[+]
|
|
Tipo: |
|