- -

Utilizing neural networks to supplant chemical kinetics tabulation through mass conservation and weighting of species depletion

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Utilizing neural networks to supplant chemical kinetics tabulation through mass conservation and weighting of species depletion

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rohrhofer, Franz M. es_ES
dc.contributor.author Posch, Stefan es_ES
dc.contributor.author Goessnitzer, Clemens es_ES
dc.contributor.author García-Oliver, José M es_ES
dc.contributor.author Geiger, Bernard C. es_ES
dc.date.accessioned 2024-09-05T18:22:52Z
dc.date.available 2024-09-05T18:22:52Z
dc.date.issued 2024-05 es_ES
dc.identifier.uri http://hdl.handle.net/10251/207452
dc.description.abstract [EN] Artificial Neural Networks (ANNs) have emerged as a powerful tool in combustion simulations to replace memory -intensive tabulation of integrated chemical kinetics. Complex reaction mechanisms, however, present a challenge for standard ANN approaches as modeling multiple species typically suffers from inaccurate predictions on minor species. This paper presents a novel ANN approach which can be applied on complex reaction mechanisms in tabular data form, and only involves training a single ANN for a complete reaction mechanism. The approach incorporates a network architecture that automatically conserves mass and employs a particular loss weighting based on species depletion. Both modifications are used to improve the overall ANN performance and individual prediction accuracies, especially for minor species mass fractions. To validate its effectiveness, the approach is compared to standard ANNs in terms of performance and ANN complexity. Four distinct reaction mechanisms (H2, C7H16, C12H26, OME34) are used as a test cases, and results demonstrate that considerable improvements can be achieved by applying both modifications. es_ES
dc.description.sponsorship This work was supported by the Austrian COMET - Competence Centers for Excellent Technologies - Programme of the Austrian Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology, the Austrian Federal Ministry for Digital and Economic Affairs, and the States of Styria, Upper Austria, Tyrol, and Vienna for the COMET Centers Know-Center and LEC EvoLET, respectively. The COMET Programme is managed by the Austrian Research Promotion Agency (FFG) . es_ES
dc.language Inglés es_ES
dc.publisher Elsevier BV es_ES
dc.relation.ispartof Energy and AI es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Neural network approach es_ES
dc.subject Chemical kinetics es_ES
dc.subject Flamelet tabulation es_ES
dc.subject Mass conservation es_ES
dc.subject Species loss weighting es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Utilizing neural networks to supplant chemical kinetics tabulation through mass conservation and weighting of species depletion es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.egyai.2024.100341 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Rohrhofer, FM.; Posch, S.; Goessnitzer, C.; García-Oliver, JM.; Geiger, BC. (2024). Utilizing neural networks to supplant chemical kinetics tabulation through mass conservation and weighting of species depletion. Energy and AI. 16. https://doi.org/10.1016/j.egyai.2024.100341 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.egyai.2024.100341 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.identifier.eissn 2666-5468 es_ES
dc.relation.pasarela S\522879 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem