- -

ZeoSyn: A Comprehensive Zeolite Synthesis Dataset Enabling Machine-Learning Rationalization of Hydrothermal Parameters

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

ZeoSyn: A Comprehensive Zeolite Synthesis Dataset Enabling Machine-Learning Rationalization of Hydrothermal Parameters

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pan, Elton es_ES
dc.contributor.author Kwon, Soonhyoung es_ES
dc.contributor.author Jensen, Zach es_ES
dc.contributor.author Xie, Mingrou es_ES
dc.contributor.author Gómez-Bombarelli, Rafael es_ES
dc.contributor.author Moliner Marin, Manuel es_ES
dc.contributor.author Román-Leshkov, Yuriy es_ES
dc.contributor.author Olivetti, Elsa es_ES
dc.date.accessioned 2024-09-09T18:09:39Z
dc.date.available 2024-09-09T18:09:39Z
dc.date.issued 2024-03-06 es_ES
dc.identifier.uri http://hdl.handle.net/10251/207822
dc.description.abstract [EN] Zeolites, nanoporous aluminosilicates with well-defined porous structures, are versatile materials with applications in catalysis, gas separation, and ion exchange. Hydrothermal synthesis is widely used for zeolite production, offering control over composition, crystallinity, and pore size. However, the intricate interplay of synthesis parameters necessitates a comprehensive understanding of synthesis-structure relationships to optimize the synthesis process. Hitherto, public zeolite synthesis databases only contain a subset of parameters and are small in scale, comprising up to a few thousand synthesis routes. We present ZeoSyn, a dataset of 23,961 zeolite hydrothermal synthesis routes, encompassing 233 zeolite topologies and 921 organic structure-directing agents (OSDAs). Each synthesis route comprises comprehensive synthesis parameters: 1) gel composition, 2) reaction conditions, 3) OSDAs, and 4) zeolite products. Using ZeoSyn, we develop a machine learning classifier to predict the resultant zeolite given a synthesis route with >70% accuracy. We employ SHapley Additive exPlanations (SHAP) to uncover key synthesis parameters for >200 zeolite frameworks. We introduce an aggregation approach to extend SHAP to all building units. We demonstrate applications of this approach to phase-selective and intergrowth synthesis. This comprehensive analysis illuminates the synthesis parameters pivotal in driving zeolite crystallization, offering the potential to guide the synthesis of desired zeolites. es_ES
dc.description.sponsorship The authors acknowledge funding from the Spanish Government through the contracts PID2021-122755OB-I00 funded by MCIN/AEI/10.13039/501100011033, TED2021-130739B-I00 funded by MCIN/AEI/10.13039/501100011033/EU/PRTR, and Severo Ochoa Center of Excellence program (CEX2021-001230-S). The authors also acknowledge partial funding from the National Science Foundation DMREF Awards 1922090, 1922311, and 1922372; the Office of Naval Research (ONR) under contract N00014-20-1-2280; Kwanjeong Educational Fellowship; MIT International Science, Technology Initiatives (MISTI) Seed Funds; and the Agency for Science, Technology and Research. es_ES
dc.language Inglés es_ES
dc.relation.ispartof ACS CENTRAL SCIENCE es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject High-Throughput es_ES
dc.subject Synthesismolecular-Sieves es_ES
dc.subject Amorphous Precursors es_ES
dc.subject SI/AL Ratio es_ES
dc.subject Crystallization es_ES
dc.subject Catalysts es_ES
dc.subject Transformation es_ES
dc.subject Temperature es_ES
dc.subject Database es_ES
dc.subject Sapo-11 es_ES
dc.title ZeoSyn: A Comprehensive Zeolite Synthesis Dataset Enabling Machine-Learning Rationalization of Hydrothermal Parameters es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acscentsci.3c01615 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-122755OB-I00/ES/CATALIZADORES MULTI-FUNCIONALES CON APLICACION EN PROCESOS DE INTERES MEDIOAMBIENTAL E INDUSTRIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1922090//DMREF Awards/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1922311//DMREF Awards/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1922372//DMREF Awards/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ONR//N00014-20-1-2280/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//CEX2021-001230-S/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//TED2021-130739B-I00//Proyectos Estratégicos Orientados a la Transición Ecológica y a la Transición Digital. Convocatoria 2021/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Pan, E.; Kwon, S.; Jensen, Z.; Xie, M.; Gómez-Bombarelli, R.; Moliner Marin, M.; Román-Leshkov, Y.... (2024). ZeoSyn: A Comprehensive Zeolite Synthesis Dataset Enabling Machine-Learning Rationalization of Hydrothermal Parameters. ACS CENTRAL SCIENCE. 10(3):729-743. https://doi.org/10.1021/acscentsci.3c01615 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acscentsci.3c01615 es_ES
dc.description.upvformatpinicio 729 es_ES
dc.description.upvformatpfin 743 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2374-7943 es_ES
dc.identifier.pmid 38559304 es_ES
dc.identifier.pmcid PMC10979502 es_ES
dc.relation.pasarela S\522463 es_ES
dc.contributor.funder Office of Naval Research es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem