Mostrar el registro completo del ítem
Pan, E.; Kwon, S.; Jensen, Z.; Xie, M.; Gómez-Bombarelli, R.; Moliner Marin, M.; Román-Leshkov, Y.... (2024). ZeoSyn: A Comprehensive Zeolite Synthesis Dataset Enabling Machine-Learning Rationalization of Hydrothermal Parameters. ACS CENTRAL SCIENCE. 10(3):729-743. https://doi.org/10.1021/acscentsci.3c01615
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/207822
Título: | ZeoSyn: A Comprehensive Zeolite Synthesis Dataset Enabling Machine-Learning Rationalization of Hydrothermal Parameters | |
Autor: | Pan, Elton Kwon, Soonhyoung Jensen, Zach Xie, Mingrou Gómez-Bombarelli, Rafael Román-Leshkov, Yuriy Olivetti, Elsa | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Zeolites, nanoporous aluminosilicates with well-defined porous structures, are versatile materials with applications in catalysis, gas separation, and ion exchange. Hydrothermal synthesis is widely used for zeolite ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Versión del editor: | https://doi.org/10.1021/acscentsci.3c01615 | |
Código del Proyecto: |
...[+] |
|
Agradecimientos: |
The authors acknowledge funding from the Spanish Government through the contracts PID2021-122755OB-I00 funded by MCIN/AEI/10.13039/501100011033, TED2021-130739B-I00 funded by MCIN/AEI/10.13039/501100011033/EU/PRTR, and ...[+]
|
|
Tipo: |
|