- -

Data-Driven Strategies for Early Detection of Corporates’ Financial Distress

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Data-Driven Strategies for Early Detection of Corporates’ Financial Distress

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Riccio, Donato es_ES
dc.contributor.author Bifulco, Giuseppe es_ES
dc.contributor.author Francesco, Paolone es_ES
dc.contributor.author Mazzitelli, Andrea es_ES
dc.contributor.author Maturo, Fabrizio es_ES
dc.date.accessioned 2024-09-25T11:04:18Z
dc.date.available 2024-09-25T11:04:18Z
dc.date.issued 2024-07-16
dc.identifier.isbn 9788413962016
dc.identifier.uri http://hdl.handle.net/10251/208635
dc.description.abstract [EN] Scholars have taken a keen interest in predicting corporate crises in the past decades. However, most studies focused on classical parametric models that, by their nature, can consider few predictors and interactions and must respect numerous assumptions. Over the past few years, the economy has faced a severe structural crisis that has resulted in significantly lower income, cash, and capital levels than in the past. This crisis has led to insolvency and bankruptcy in many cases. Hence, there is a renewed interest in research for new models for forecasting business crises using novel advanced statistical learning techniques. The study shows that using tree-based methods and hyper-parameters optimization leads to excellent results in terms of accuracy. Moreover, this approach allows us to automatically consider all possible interactions and discover relevant aspects never considered in past studies. This line of research provides fascinating results that can bring new knowledge into the reference literature. es_ES
dc.format.extent 7 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 6th International Conference on Advanced Research Methods and Analytics (CARMA 2024)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Corporate crises es_ES
dc.subject Financial distress es_ES
dc.subject Statistical learning es_ES
dc.title Data-Driven Strategies for Early Detection of Corporates’ Financial Distress es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2024.2024.17826
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Riccio, D.; Bifulco, G.; Francesco, P.; Mazzitelli, A.; Maturo, F. (2024). Data-Driven Strategies for Early Detection of Corporates’ Financial Distress. Editorial Universitat Politècnica de València. 205-211. https://doi.org/10.4995/CARMA2024.2024.17826 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2024 - 6th International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Junio 26-28, 2024 es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2024/paper/view/17826 es_ES
dc.description.upvformatpinicio 205 es_ES
dc.description.upvformatpfin 211 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\17826 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem