Mostrar el registro sencillo del ítem
dc.contributor.author | Riccio, Donato | es_ES |
dc.contributor.author | Bifulco, Giuseppe | es_ES |
dc.contributor.author | Francesco, Paolone | es_ES |
dc.contributor.author | Mazzitelli, Andrea | es_ES |
dc.contributor.author | Maturo, Fabrizio | es_ES |
dc.date.accessioned | 2024-09-25T11:04:18Z | |
dc.date.available | 2024-09-25T11:04:18Z | |
dc.date.issued | 2024-07-16 | |
dc.identifier.isbn | 9788413962016 | |
dc.identifier.uri | http://hdl.handle.net/10251/208635 | |
dc.description.abstract | [EN] Scholars have taken a keen interest in predicting corporate crises in the past decades. However, most studies focused on classical parametric models that, by their nature, can consider few predictors and interactions and must respect numerous assumptions. Over the past few years, the economy has faced a severe structural crisis that has resulted in significantly lower income, cash, and capital levels than in the past. This crisis has led to insolvency and bankruptcy in many cases. Hence, there is a renewed interest in research for new models for forecasting business crises using novel advanced statistical learning techniques. The study shows that using tree-based methods and hyper-parameters optimization leads to excellent results in terms of accuracy. Moreover, this approach allows us to automatically consider all possible interactions and discover relevant aspects never considered in past studies. This line of research provides fascinating results that can bring new knowledge into the reference literature. | es_ES |
dc.format.extent | 7 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Editorial Universitat Politècnica de València | es_ES |
dc.relation.ispartof | 6th International Conference on Advanced Research Methods and Analytics (CARMA 2024) | |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Corporate crises | es_ES |
dc.subject | Financial distress | es_ES |
dc.subject | Statistical learning | es_ES |
dc.title | Data-Driven Strategies for Early Detection of Corporates’ Financial Distress | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.4995/CARMA2024.2024.17826 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Riccio, D.; Bifulco, G.; Francesco, P.; Mazzitelli, A.; Maturo, F. (2024). Data-Driven Strategies for Early Detection of Corporates’ Financial Distress. Editorial Universitat Politècnica de València. 205-211. https://doi.org/10.4995/CARMA2024.2024.17826 | es_ES |
dc.description.accrualMethod | OCS | es_ES |
dc.relation.conferencename | CARMA 2024 - 6th International Conference on Advanced Research Methods and Analytics | es_ES |
dc.relation.conferencedate | Junio 26-28, 2024 | es_ES |
dc.relation.publisherversion | http://ocs.editorial.upv.es/index.php/CARMA/CARMA2024/paper/view/17826 | es_ES |
dc.description.upvformatpinicio | 205 | es_ES |
dc.description.upvformatpfin | 211 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | OCS\17826 | es_ES |