Mostrar el registro completo del ítem
Parres-Montoya, D.; Albiol Colomer, A.; Paredes Palacios, R. (2024). Improving Radiology Report Generation Quality and Diversity through Reinforcement Learning and Text Augmentation. Bioengineering. 11(4). https://doi.org/10.3390/bioengineering11040351
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/208655
Título: | Improving Radiology Report Generation Quality and Diversity through Reinforcement Learning and Text Augmentation | |
Autor: | ||
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Deep learning is revolutionizing radiology report generation (RRG) with the adoption of vision encoder--decoder (VED) frameworks, which transform radiographs into detailed medical reports. Traditional methods, however, ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.3390/bioengineering11040351 | |
Coste APC: |
|
|
Código del Proyecto: |
|
|
Agradecimientos: |
Work was partially supported by the Generalitat Valenciana under the predoctoral grant
CIACIF/2022/289, with the support of valgrAI-Valencian Graduate School and Research Network of Artificial Intelligence and the Generalitat ...[+]
|
|
Tipo: |
|