- -

Improving Radiology Report Generation Quality and Diversity through Reinforcement Learning and Text Augmentation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improving Radiology Report Generation Quality and Diversity through Reinforcement Learning and Text Augmentation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Parres-Montoya, Daniel es_ES
dc.contributor.author Albiol Colomer, Alberto es_ES
dc.contributor.author Paredes Palacios, Roberto es_ES
dc.date.accessioned 2024-09-25T18:04:37Z
dc.date.available 2024-09-25T18:04:37Z
dc.date.issued 2024-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/208655
dc.description.abstract [EN] Deep learning is revolutionizing radiology report generation (RRG) with the adoption of vision encoder--decoder (VED) frameworks, which transform radiographs into detailed medical reports. Traditional methods, however, often generate reports of limited diversity and struggle with generalization. Our research introduces reinforcement learning and text augmentation to tackle these issues, significantly improving report quality and variability. By employing RadGraph as a reward metric and innovating in text augmentation, we surpass existing benchmarks like BLEU4, ROUGE-L, F1CheXbert, and RadGraph, setting new standards for report accuracy and diversity on MIMIC-CXR and Open-i datasets. Our VED model achieves F1-scores of 66.2 for CheXbert and 37.8 for RadGraph on the MIMIC-CXR dataset, and 54.7 and 45.6, respectively, on Open-i. These outcomes represent a significant breakthrough in the RRG field. The findings and implementation of the proposed approach, aimed at enhancing diagnostic precision and radiological interpretations in clinical settings, are publicly available on GitHub to encourage further advancements in the field. es_ES
dc.description.sponsorship Work was partially supported by the Generalitat Valenciana under the predoctoral grant CIACIF/2022/289, with the support of valgrAI-Valencian Graduate School and Research Network of Artificial Intelligence and the Generalitat Valenciana, and cofunded by the European Union. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Bioengineering es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Radiology report generation es_ES
dc.subject Reinforcement learning es_ES
dc.subject Text augmentation es_ES
dc.subject Machine learning es_ES
dc.subject Deep learning es_ES
dc.subject Vision transformer es_ES
dc.subject Chest X-rays es_ES
dc.subject Medical image es_ES
dc.subject Text generation es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Improving Radiology Report Generation Quality and Diversity through Reinforcement Learning and Text Augmentation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/bioengineering11040351 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//CIACIF%2F2022%2F28/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Parres-Montoya, D.; Albiol Colomer, A.; Paredes Palacios, R. (2024). Improving Radiology Report Generation Quality and Diversity through Reinforcement Learning and Text Augmentation. Bioengineering. 11(4). https://doi.org/10.3390/bioengineering11040351 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/bioengineering11040351 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2306-5354 es_ES
dc.identifier.pmid 38671773 es_ES
dc.identifier.pmcid PMC11048060 es_ES
dc.relation.pasarela S\513470 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Valencian Graduate School and Research Network of Artificial Intelligence es_ES
upv.costeAPC 3025 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem