Mostrar el registro sencillo del ítem
dc.contributor.author | Parres-Montoya, Daniel | es_ES |
dc.contributor.author | Albiol Colomer, Alberto | es_ES |
dc.contributor.author | Paredes Palacios, Roberto | es_ES |
dc.date.accessioned | 2024-09-25T18:04:37Z | |
dc.date.available | 2024-09-25T18:04:37Z | |
dc.date.issued | 2024-04 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/208655 | |
dc.description.abstract | [EN] Deep learning is revolutionizing radiology report generation (RRG) with the adoption of vision encoder--decoder (VED) frameworks, which transform radiographs into detailed medical reports. Traditional methods, however, often generate reports of limited diversity and struggle with generalization. Our research introduces reinforcement learning and text augmentation to tackle these issues, significantly improving report quality and variability. By employing RadGraph as a reward metric and innovating in text augmentation, we surpass existing benchmarks like BLEU4, ROUGE-L, F1CheXbert, and RadGraph, setting new standards for report accuracy and diversity on MIMIC-CXR and Open-i datasets. Our VED model achieves F1-scores of 66.2 for CheXbert and 37.8 for RadGraph on the MIMIC-CXR dataset, and 54.7 and 45.6, respectively, on Open-i. These outcomes represent a significant breakthrough in the RRG field. The findings and implementation of the proposed approach, aimed at enhancing diagnostic precision and radiological interpretations in clinical settings, are publicly available on GitHub to encourage further advancements in the field. | es_ES |
dc.description.sponsorship | Work was partially supported by the Generalitat Valenciana under the predoctoral grant CIACIF/2022/289, with the support of valgrAI-Valencian Graduate School and Research Network of Artificial Intelligence and the Generalitat Valenciana, and cofunded by the European Union. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Bioengineering | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Radiology report generation | es_ES |
dc.subject | Reinforcement learning | es_ES |
dc.subject | Text augmentation | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Vision transformer | es_ES |
dc.subject | Chest X-rays | es_ES |
dc.subject | Medical image | es_ES |
dc.subject | Text generation | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.subject.classification | TEORÍA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Improving Radiology Report Generation Quality and Diversity through Reinforcement Learning and Text Augmentation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/bioengineering11040351 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//CIACIF%2F2022%2F28/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Parres-Montoya, D.; Albiol Colomer, A.; Paredes Palacios, R. (2024). Improving Radiology Report Generation Quality and Diversity through Reinforcement Learning and Text Augmentation. Bioengineering. 11(4). https://doi.org/10.3390/bioengineering11040351 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/bioengineering11040351 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 2306-5354 | es_ES |
dc.identifier.pmid | 38671773 | es_ES |
dc.identifier.pmcid | PMC11048060 | es_ES |
dc.relation.pasarela | S\513470 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Valencian Graduate School and Research Network of Artificial Intelligence | es_ES |
upv.costeAPC | 3025 | es_ES |