Mostrar el registro sencillo del ítem
dc.contributor.author | Fernández, Herman | es_ES |
dc.contributor.author | Rubio Arjona, Lorenzo | es_ES |
dc.contributor.author | Rodrigo Peñarrocha, Vicent Miquel | es_ES |
dc.contributor.author | Reig, Juan | es_ES |
dc.date.accessioned | 2024-10-03T18:25:46Z | |
dc.date.available | 2024-10-03T18:25:46Z | |
dc.date.issued | 2024-07 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/209260 | |
dc.description.abstract | [EN] The development of intelligent transportation systems (ITS), vehicular ad hoc networks (VANETs), and autonomous driving (AD) has progressed rapidly in recent years, driven by artificial intelligence (AI), the internet of things (IoT), and their integration with dedicated short-range communications (DSRC) systems and fifth-generation (5G) networks. This has led to improved mobility conditions in different road propagation environments: urban, suburban, rural, and highway. The use of these communication technologies has enabled drivers and pedestrians to be more aware of the need to improve their behavior and decision making in adverse traffic conditions by sharing information from cameras, radars, and sensors widely deployed in vehicles and road infrastructure. However, wireless data transmission in VANETs is affected by the specific conditions of the propagation environment, weather, terrain, traffic density, and frequency bands used. In this paper, we characterize the path loss based on the extensive measurement campaign carrier out in vehicular environments at 700 MHz and 5.9 GHz under realistic road traffic conditions. From a linear dual-slope path loss propagation model, the results of the path loss exponents and the standard deviations of the shadowing are reported. This study focused on three different environments, i.e., urban with high traffic density (U-HD), urban with moderate/low traffic density (U-LD), and suburban (SU). The results presented here can be easily incorporated into VANET simulators to develop, evaluate, and validate new protocols and system architecture configurations under more realistic propagation conditions. | es_ES |
dc.description.sponsorship | This research was funded in part by the MCIN/AEI/10.13039/501100011033/ through the362 I+D+i Project under Grant PID2020-119173RB-C21, and by the Pedagogical and Technological University of Colombia (Project Number SGI 3721). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Vehicular ad hoc network (VANET) | es_ES |
dc.subject | Vehicle-to-everything (V2X) | es_ES |
dc.subject | Artificial intelligence (AI) | es_ES |
dc.subject | Internet of things (IoT) | es_ES |
dc.subject | Path loss models | es_ES |
dc.subject | Path loss exponent | es_ES |
dc.subject | 5G | es_ES |
dc.subject | Autonomous driving (AD) | es_ES |
dc.subject | Cooperative autonomous driving (CAD) | es_ES |
dc.subject | Cooperative sensing | es_ES |
dc.subject | Connected and autonomous vehicles (CAVs) | es_ES |
dc.subject.classification | TEORÍA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Dual-Slope Path Loss Model for Integrating Vehicular Sensing Applications in Urban and Suburban Environments | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s24134334 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-119173RB-C21/ES/TECNICAS DE MEDIDA Y MODELOS AVANZADOS DE CANAL PARA LA DEFINICION DE LOS FUTUROS SISTEMAS 6G (A6GMODEL-UPV)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPTC//SGI 3721/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.description.bibliographicCitation | Fernández, H.; Rubio Arjona, L.; Rodrigo Peñarrocha, VM.; Reig, J. (2024). Dual-Slope Path Loss Model for Integrating Vehicular Sensing Applications in Urban and Suburban Environments. Sensors. 24(13). https://doi.org/10.3390/s24134334 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s24134334 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 13 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.identifier.pmid | 39001113 | es_ES |
dc.identifier.pmcid | PMC11243808 | es_ES |
dc.relation.pasarela | S\525133 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Universidad Pedagógica y Tecnológica de Colombia | es_ES |