- -

Quantifying the impact of ASR-based instruction: What does the iSpraak platform learner data show?

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Quantifying the impact of ASR-based instruction: What does the iSpraak platform learner data show?

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Nickolai, Dan es_ES
dc.date.accessioned 2024-10-23T09:45:14Z
dc.date.available 2024-10-23T09:45:14Z
dc.date.issued 2024-10-17
dc.identifier.uri http://hdl.handle.net/10251/210736
dc.description.abstract [EN] Computer-assisted Pronunciation Training (CAPT) tools have become increasingly dependent on Automatic Speech Recognition (ASR) technology to provide automated corrective pronunciation feedback to learners. The extent to which ASR-based tools measurably improve second language (L2) pronunciation is of great interest to language educators globally, and Computer-assisted Language Learning (CALL) researchers. Studies to date have largely been conducted by research practitioners with small-to-medium sized samples at single institutions. The findings and conclusions drawn from such small-scale data collection might be significantly bolstered by analysing the vast stores of learner data from large CAPT platforms. This study is informed by a sizable eight-year dataset from iSpraak, an open-source pronunciation tool designed to model and evaluate L2 speech. Quantitative analysis of anonymised learner interactions with this application reveals significant gains in intelligibility measures across multiple languages. Results also suggest that the extent of ASR s ability to improve learner pronunciation may be L2 dependent. es_ES
dc.description.sponsorship The National Endowment for the Humanities has generously funded the ongoing development of iSpraak and the research efforts behind this work. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof The EuroCALL Review es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Automatic Speech Recognition (ASR) es_ES
dc.subject Computer-Assisted Pronunciation Training (CAPT) es_ES
dc.subject Pronunciation es_ES
dc.subject Corrective feedback es_ES
dc.title Quantifying the impact of ASR-based instruction: What does the iSpraak platform learner data show? es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/eurocall.2024.20221
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Nickolai, D. (2024). Quantifying the impact of ASR-based instruction: What does the iSpraak platform learner data show?. The EuroCALL Review. 31(1):16-23. https://doi.org/10.4995/eurocall.2024.20221 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/eurocall.2024.20221 es_ES
dc.description.upvformatpinicio 16 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 31 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1695-2618
dc.relation.pasarela OJS\20221 es_ES
dc.contributor.funder National Endowment for the Humanities, EEUU es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem