- -

Machine learning based digital twins on vehicle transient cycles and their potential for predicting fuel consumption

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Machine learning based digital twins on vehicle transient cycles and their potential for predicting fuel consumption

Mostrar el registro completo del ítem

Tomanik, E.; Jiménez-Reyes, AJ.; Tomanik, V.; Tormos, B. (2023). Machine learning based digital twins on vehicle transient cycles and their potential for predicting fuel consumption. Vehicles. 5(2):583-604. https://doi.org/10.3390/vehicles5020032

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/210800

Ficheros en el ítem

Metadatos del ítem

Título: Machine learning based digital twins on vehicle transient cycles and their potential for predicting fuel consumption
Autor: Tomanik, Eduardo Jiménez-Reyes, Antonio José Tomanik, Victor Tormos, B.
Fecha difusión:
Resumen:
[EN] Transient car emission tests generate huge amount of test data, but their results are usually evaluated only using their "accumulated" cycle values according to the homologation limits. In this work, two machine ...[+]
Palabras clave: Machine learning , Fuel consumption prediction , Digital twins
Derechos de uso: Reconocimiento (by)
Fuente:
Vehicles. (eissn: 2624-8921 )
DOI: 10.3390/vehicles5020032
Editorial:
MDPI
Versión del editor: https://doi.org/10.3390/vehicles5020032
Código del Proyecto:
info:eu-repo/grantAgreement/MCIU//FPU18%2F02116//AYUDA PREDOCTORAL FPU-JIMENEZ REYES. PROYECTO: ASSESMENT AND OPTIMIZATION OF FRICTION LOSSES AND MECHANICAL EFFICIENCY IN INTERNAL COMBUSTION ENGINES BY 1D SIMULATION TOOLS/
Agradecimientos:
This research was partially funded by the Spanish Ministry of Science, Innovation and Universities for financing the PhD studies of Antonio J. Jimenez-Reyes (grant FPU18/02116).
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem