Mostrar el registro completo del ítem
Herranz-Oliveros, D.; Tejedor-Romero, M.; Gimenez-Guzman, JM.; De La Cruz-Piris, L. (2024). Unsupervised Learning for Lateral-Movement-Based Threat Mitigation in Active Directory Attack Graphs. Electronics. 13(19). https://doi.org/10.3390/electronics13193944
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/211254
Título: | Unsupervised Learning for Lateral-Movement-Based Threat Mitigation in Active Directory Attack Graphs | |
Autor: | Herranz-Oliveros, David Tejedor-Romero, Marino de la Cruz-Piris, Luis | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Cybersecurity threats, particularly those involving lateral movement within networks, pose significant risks to critical infrastructures such as Microsoft Active Directory. This study addresses the need for effective ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.3390/electronics13193944 | |
Código del Proyecto: |
|
|
Agradecimientos: |
This publication is part of project TED2021-131387B-I00 funded by MCIN/AEI/10.13039/501100011033 and by the European Union "NextGenerationEU"/PRTR and of project PID2021-123168NB-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER, ...[+]
|
|
Tipo: |
|