- -

Unsupervised Learning for Lateral-Movement-Based Threat Mitigation in Active Directory Attack Graphs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Unsupervised Learning for Lateral-Movement-Based Threat Mitigation in Active Directory Attack Graphs

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Herranz-Oliveros, David es_ES
dc.contributor.author Tejedor-Romero, Marino es_ES
dc.contributor.author Gimenez-Guzman, Jose Manuel es_ES
dc.contributor.author de la Cruz-Piris, Luis es_ES
dc.date.accessioned 2024-11-04T19:04:39Z
dc.date.available 2024-11-04T19:04:39Z
dc.date.issued 2024-10 es_ES
dc.identifier.uri http://hdl.handle.net/10251/211254
dc.description.abstract [EN] Cybersecurity threats, particularly those involving lateral movement within networks, pose significant risks to critical infrastructures such as Microsoft Active Directory. This study addresses the need for effective defense mechanisms that minimize network disruption while preventing attackers from reaching key assets. Modeling Active Directory networks as a graph in which the nodes represent the network components and the edges represent the logical interactions between them, we use centrality metrics to derive the impact of hardening nodes in terms of constraining the progression of attacks. We propose using Unsupervised Learning techniques, specifically density-based clustering algorithms, to identify those nodes given the information provided by their metrics. Our approach includes simulating attack paths using a snowball model, enabling us to analytically evaluate the impact of hardening on delaying Domain Administration compromise. We tested our methodology on both real and synthetic Active Directory graphs, demonstrating that it can significantly slow down the propagation of threats from reaching the Domain Administration across the studied scenarios. Additionally, we explore the potential of these techniques to enable flexible selection of the number of nodes to secure. Our findings suggest that the proposed methods significantly enhance the resilience of Active Directory environments against targeted cyber-attacks. es_ES
dc.description.sponsorship This publication is part of project TED2021-131387B-I00 funded by MCIN/AEI/10.13039/501100011033 and by the European Union "NextGenerationEU"/PRTR and of project PID2021-123168NB-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER, UE. Finally, this work is a part of the research project SBPLY/23/180225/000160, which is funded by the EU through FEDER, Spain, and by the JCCM through INNOCAM. David Herranz is also funded by both an FPU grant and a Mobility Grant for Research Staff in Training from the University of Alcala. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Electronics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cybersecurity es_ES
dc.subject Lateral movement es_ES
dc.subject Threat mitigation es_ES
dc.subject Unsupervised learning es_ES
dc.subject Attack graphs es_ES
dc.subject Active directory es_ES
dc.subject Hardening placement es_ES
dc.subject.classification INGENIERÍA TELEMÁTICA es_ES
dc.title Unsupervised Learning for Lateral-Movement-Based Threat Mitigation in Active Directory Attack Graphs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/electronics13193944 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PID2021-123168NB-I00//EVOLUCIÓN DE LA RED DE ACCESO RADIO HACIA 6G PARA SERVICIOS MASIVOS Y DE BAJA LATENCIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//SBPLY%2F23%2F180225%2F000160/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//TED2021-131387B-I00/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Herranz-Oliveros, D.; Tejedor-Romero, M.; Gimenez-Guzman, JM.; De La Cruz-Piris, L. (2024). Unsupervised Learning for Lateral-Movement-Based Threat Mitigation in Active Directory Attack Graphs. Electronics. 13(19). https://doi.org/10.3390/electronics13193944 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/electronics13193944 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 19 es_ES
dc.identifier.eissn 2079-9292 es_ES
dc.relation.pasarela S\530934 es_ES
dc.contributor.funder Universidad de Alcalá es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Molecular Biology Organization es_ES
dc.contributor.funder Junta de Comunidades de Castilla-La Mancha es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem