- -

MRI Rician Noise Reduction Using Recurrent Convolutional Neural Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

MRI Rician Noise Reduction Using Recurrent Convolutional Neural Networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gurrola-Ramos, Javier es_ES
dc.contributor.author Alarcon, Teresa es_ES
dc.contributor.author Dalmau, Oscar es_ES
dc.contributor.author Manjón Herrera, José Vicente es_ES
dc.date.accessioned 2024-11-06T19:18:16Z
dc.date.available 2024-11-06T19:18:16Z
dc.date.issued 2024 es_ES
dc.identifier.uri http://hdl.handle.net/10251/211402
dc.description.abstract [EN] Magnetic resonance images are usually corrupted by noise during the acquisition process, which can affect the results of subsequent medical image analysis and diagnosis. This paper presents a denoising recurrent convolutional neural network for Brain MRI denoising. The proposed model consists of a one-level autoencoder architecture with a shortcut, in which the standard convolutional blocks are changed for a new recurrent convolutional denoising block. This block is based on the gated recurrent units combined with local residual learning, allowing us to filter the noisy image recursively. Additionally, we adopt global residual learning to directly estimate the corrupted image's noise instead of the noise-free image. The proposed model requires less computation than other models based on neural networks and experimentally outperforms state-of-the-art models on clinical brain MRI datasets, particularly for high noise levels. es_ES
dc.description.sponsorship This work was supported in part by Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico, under Grant 258033; and in part by the Project Laboratorio de Supercomputo del Bajio under Grant 300832. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Access es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Convolutional neural networks es_ES
dc.subject Noise reduction es_ES
dc.subject Kernel es_ES
dc.subject Magnetic resonance imaging es_ES
dc.subject Training es_ES
dc.subject Computational modeling es_ES
dc.subject Encoding es_ES
dc.subject Recurrent neural networks es_ES
dc.subject Autoencoder es_ES
dc.subject Convolutional neural network es_ES
dc.subject Denoising es_ES
dc.subject Gated recurrent units es_ES
dc.subject MRI denoising es_ES
dc.subject Recurrent convolutional neural network es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title MRI Rician Noise Reduction Using Recurrent Convolutional Neural Networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/ACCESS.2024.3446791 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONAHCYT/CONACYT//300832/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONAHCYT/CONACYT//258033/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Gurrola-Ramos, J.; Alarcon, T.; Dalmau, O.; Manjón Herrera, JV. (2024). MRI Rician Noise Reduction Using Recurrent Convolutional Neural Networks. IEEE Access. 12:128272-128284. https://doi.org/10.1109/ACCESS.2024.3446791 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/ACCESS.2024.3446791 es_ES
dc.description.upvformatpinicio 128272 es_ES
dc.description.upvformatpfin 128284 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.identifier.eissn 2169-3536 es_ES
dc.relation.pasarela S\527293 es_ES
dc.contributor.funder Consejo Nacional de Humanidades, Ciencias y Tecnologías, México es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem