España Boquera, S.; Castro-Bleda, MJ.; Gorbe Moya, J.; Zamora Martínez, FJ. (2011). Improving offline handwritten text recognition with hybrid HMM/ANN models. IEEE Transactions on Pattern Analysis and Machine Intelligence. 33(4):767-779. https://doi.org/10.1109/TPAMI.2010.141
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/36005
Título:
|
Improving offline handwritten text recognition with hybrid HMM/ANN models
|
Autor:
|
España Boquera, Salvador
Castro-Bleda, Maria Jose
Gorbe Moya, Jorge
Zamora Martínez, Francisco Julián
|
Entidad UPV:
|
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
|
Fecha difusión:
|
|
Resumen:
|
This paper proposes the use of hybrid Hidden Markov Model (HMM)/Artificial Neural Network (ANN) models for recognizing unconstrained offline handwritten texts. The structural part of the optical models has been modeled ...[+]
This paper proposes the use of hybrid Hidden Markov Model (HMM)/Artificial Neural Network (ANN) models for recognizing unconstrained offline handwritten texts. The structural part of the optical models has been modeled with Markov chains, and a Multilayer Perceptron is used to estimate the emission probabilities. This paper also presents new techniques to remove slope and slant from handwritten text and to normalize the size of text images with supervised learning methods. Slope correction and size normalization are achieved by classifying local extrema of text contours with Multilayer Perceptrons. Slant is also removed in a nonuniform way by using Artificial Neural Networks. Experiments have been conducted on offline handwritten text lines from the IAM database, and the recognition rates achieved, in comparison to the ones reported in the literature, are among the best for the same task. © 2006 IEEE.
[-]
|
Palabras clave:
|
Handwriting recognition
,
HMM
,
Hybrid HMM/ANN
,
Image normalization.
,
Multilayer perceptron
,
Neural networks
,
Offline handwriting
,
Image normalization
,
Electric loads
,
Feedforward neural networks
,
Hidden Markov models
,
Multilayer neural networks
,
Multilayers
,
Optical multilayers
,
Pattern recognition systems
,
Character recognition
|
Derechos de uso:
|
Cerrado |
Fuente:
|
IEEE Transactions on Pattern Analysis and Machine Intelligence. (issn:
0162-8828
)
|
DOI:
|
10.1109/TPAMI.2010.141
|
Editorial:
|
Institute of Electrical and Electronics Engineers (IEEE)
|
Versión del editor:
|
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.141
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/MEC//TIN2006-12767/ES/SISTEMA DE TRANSCRIPCION ASISTIDA PARA TEXTO ESCRITO/
info:eu-repo/grantAgreement/GVA//GV%2F2006%2F250/
|
Agradecimientos:
|
The authors acknowledge the valuable help provided by Moises Pastor, Juan Miguel Vilar, Alex Graves, and Marcus Liwicki. Thanks are also due to the reviewers and the Editor-in-Chief for their many valuable comments and ...[+]
The authors acknowledge the valuable help provided by Moises Pastor, Juan Miguel Vilar, Alex Graves, and Marcus Liwicki. Thanks are also due to the reviewers and the Editor-in-Chief for their many valuable comments and suggestions. This work has been partially supported by the Spanish Ministerio de Educacion y Ciencia (TIN2006-12767) and by the BPFI 06/250 Scholarship from the Conselleria d'Empresa, Universitat i Ciencia, Generalitat Valenciana.
[-]
|
Tipo:
|
Artículo
|