- -

Improving offline handwritten text recognition with hybrid HMM/ANN models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improving offline handwritten text recognition with hybrid HMM/ANN models

Mostrar el registro completo del ítem

España Boquera, S.; Castro-Bleda, MJ.; Gorbe Moya, J.; Zamora Martínez, FJ. (2011). Improving offline handwritten text recognition with hybrid HMM/ANN models. IEEE Transactions on Pattern Analysis and Machine Intelligence. 33(4):767-779. https://doi.org/10.1109/TPAMI.2010.141

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/36005

Ficheros en el ítem

Metadatos del ítem

Título: Improving offline handwritten text recognition with hybrid HMM/ANN models
Autor: España Boquera, Salvador Castro-Bleda, Maria Jose Gorbe Moya, Jorge Zamora Martínez, Francisco Julián
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
This paper proposes the use of hybrid Hidden Markov Model (HMM)/Artificial Neural Network (ANN) models for recognizing unconstrained offline handwritten texts. The structural part of the optical models has been modeled ...[+]
Palabras clave: Handwriting recognition , HMM , Hybrid HMM/ANN , Image normalization. , Multilayer perceptron , Neural networks , Offline handwriting , Image normalization , Electric loads , Feedforward neural networks , Hidden Markov models , Multilayer neural networks , Multilayers , Optical multilayers , Pattern recognition systems , Character recognition
Derechos de uso: Cerrado
Fuente:
IEEE Transactions on Pattern Analysis and Machine Intelligence. (issn: 0162-8828 )
DOI: 10.1109/TPAMI.2010.141
Editorial:
Institute of Electrical and Electronics Engineers (IEEE)
Versión del editor: http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.141
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//TIN2006-12767/ES/SISTEMA DE TRANSCRIPCION ASISTIDA PARA TEXTO ESCRITO/
info:eu-repo/grantAgreement/GVA//GV%2F2006%2F250/
Agradecimientos:
The authors acknowledge the valuable help provided by Moises Pastor, Juan Miguel Vilar, Alex Graves, and Marcus Liwicki. Thanks are also due to the reviewers and the Editor-in-Chief for their many valuable comments and ...[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem